Multivariate wavelet leaders Renyi dimension and multifractal formalism in mixed Besov spaces

被引:1
作者
Ben Abid, Moez [1 ]
Ben Slimane, Mourad [2 ]
Ben Omrane, Ines [3 ]
Turkawi, Maamoun [2 ]
机构
[1] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, Sousse 4011, Tunisia
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math, POB 90950, Riyadh 11623, Saudi Arabia
关键词
Wavelet leaders; Renyi dimension; multifractal formalism; Besov spaces; GENERALIZED DIMENSIONS; DIVERGENCE POINTS; FRACTALS;
D O I
10.1142/S0219691321500478
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we first establish a general lower bound for the multivariate wavelet leaders Renyi dimension valid for any pair (f(1), f(2)) of functions on R-m where f(1) belongs to the Besov space B-t1(s1,)infinity (R-m) with s(1) > m/t(1) and f(2) belongs to B-t2(s2,)infinity (R-m) boolean AND C-gamma (R-m) with 0 < gamma < s(2) < m/t(2). We then prove the optimality of this result for quasi all pairs (f(1), f(2)) in the Baire generic sense. Finally, we compute both iso-mixed and upper-multivariate Holder spectra for all pairs (f(1), f(2)) in the same G(delta)-set. This allows to prove (respectively, study) the Baire generic validity of the upper-multivariate (respectively, iso-multivariate) multifractal formalism based on wavelet leaders for such pairs.
引用
收藏
页数:32
相关论文
共 37 条
[1]  
[Anonymous], 1990, ACTUALITES MATH
[2]  
[Anonymous], 1997, Wavelets: A Mathematical Tool for Signal Analysis
[3]   THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 213 (1-2) :232-275
[4]  
Arneodo A., 2002, The Science of Disasters, P27
[5]   SINGULARITY SPECTRUM OF FRACTAL SIGNALS FROM WAVELET ANALYSIS - EXACT RESULTS [J].
BACRY, E ;
MUZY, JF ;
ARNEODO, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :635-674
[6]  
Balatoni J., 1956, Publ. Math. Inst. Hung. Acad. Sci, V1, P9
[7]   Wavelet series built using multifractal measures [J].
Barral, J ;
Seuret, S .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (06) :353-356
[8]   Higher-dimensional multifractal analysis [J].
Barreira, L ;
Saussol, B ;
Schmeling, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (01) :67-91
[9]   Variational principles and mixed multifractal spectra [J].
Barreira, L ;
Saussol, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :3919-3944
[10]   Holder Regularity of μ-Similar Functions [J].
Ben Abid, Moez ;
Seuret, Stephane .
CONSTRUCTIVE APPROXIMATION, 2010, 31 (01) :69-93