THE GEOMETRY AND ARITHMETIC OF A CALABI-YAU SIEGEL THREEFOLD

被引:2
|
作者
Cynk, S. [1 ]
Freitag, E. [2 ]
Manni, R. Salvati [3 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
[2] Univ Heidelberg, Inst Math, D-69120 Heidelberg, Germany
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Siegel varieties; Calabi-Yau manifold; SURFACES;
D O I
10.1142/S0129167X1100732X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we treat in details a Siegel modular variety Y that has a Calabi-Yau model, (Y) over tilde. We shall describe the structure of the ring of modular forms and its geometry. We shall illustrate two different methods of producing the Hodge numbers. The first uses the definition of Y as the quotient of another known Calabi-Yau variety X. In this case we will get the Hodge numbers considering the action of the group on a crepant resolution (X) over tilde of X. The second, purely algebraic geometric, uses the equations derived from the ring of modular forms and is based on determining explicitly the Calabi-Yau model (Y) over tilde and computing the Picard group and the Euler characteristic.
引用
收藏
页码:1585 / 1602
页数:18
相关论文
共 50 条
  • [2] Non-Kahler Calabi-Yau geometry and pluriclosed flow
    Garcia-Fernandez, Mario
    Jordan, Joshua
    Streets, Jeffrey
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 329 - 367
  • [3] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [4] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [5] Parallel Kustin-Miller unprojection with an application to Calabi-Yau geometry
    Neves, Jorge
    Papadakis, Stavros Argyrios
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 203 - 223
  • [6] CHL Calabi-Yau threefolds: curve counting, Mathieu moonshine and Siegel modular forms
    Bryan, Jim
    Oberdieck, Georg
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2020, 14 (04) : 785 - 862
  • [7] EXOTIC DEFORMATIONS OF CALABI-YAU MANIFOLDS
    De Bartolomeis, Paolo
    Tomassini, Adriano
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) : 391 - 415
  • [8] Calabi-Yau Manifolds with Affine Structures
    Kokarev, V. N.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 669 - 671
  • [9] ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS
    Haskins, Mark
    Hein, Hans-Joachim
    Nordstroem, Johannes
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 213 - 265
  • [10] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):