Elementary divisors of the Shapovalov form on the basic representation of Kac-Moody algebras

被引:8
作者
Hill, David [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
Kac-Moody algebras; symmetric groups and Hecke algebras; Shapovalov form;
D O I
10.1016/j.jalgebra.2007.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the invariant factors of the standard lattice V(Z) inside the basic representation of untwisted Kac-Moody algebras of ADE-type. This, in turn, gives the invariant factors of Cartan matrices for symmetric groups in prime characteristic as well as for the Iwahori-Hecke algebra at roots of unity. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:5208 / 5246
页数:39
相关论文
共 8 条
  • [1] [Anonymous], ENUMERATIVE COMBINAT
  • [2] On the decomposition numbers of the Hecke algebra of G(m,1,n)
    Ariki, S
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04): : 789 - 808
  • [3] Cartan determinants and Shapovalov forms
    Brundan, J
    Kleshchev, A
    [J]. MATHEMATISCHE ANNALEN, 2002, 324 (03) : 431 - 449
  • [4] Ian Grojnowski Affine, 1999, AFFINE SLP CONTROLS
  • [5] KAC V, 1995, INFINITE DIMENSIONAL
  • [6] Generalized blocks for symmetric groups
    Külshammer, B
    Olsson, JB
    Robinson, GR
    [J]. INVENTIONES MATHEMATICAE, 2003, 151 (03) : 513 - 552
  • [7] MACDONALD IG, 1995, SYMMETRIC FUNCTIONS
  • [8] Newman M., 1972, Integral Matrices