Synthesis, Internal Structure, and Formation Mechanism of Monodisperse Tin Sulfide Nanoplatelets

被引:68
作者
de Kergommeaux, Antoine [1 ,2 ,3 ]
Lopez-Haro, Miguel [4 ,5 ]
Pouget, Stephanie [4 ,5 ]
Zuo, Jian-Min [6 ]
Lebrun, Colette [7 ,8 ]
Chandezon, Frederic [1 ,2 ,3 ]
Aldakov, Dmitry [1 ,2 ,3 ]
Reiss, Peter [1 ,2 ,3 ]
机构
[1] Univ Grenoble Alpes, INAC SPrAM, F-38054 Grenoble 9, France
[2] CNRS, SPrAM, F-38054 Grenoble 9, France
[3] CEA Grenoble, INAC SPrAM, F-38054 Grenoble 9, France
[4] Univ Grenoble Alpes, INAC SP2M, F-38054 Grenoble 9, France
[5] CEA Grenoble, INAC SP2M, F-38054 Grenoble 9, France
[6] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[7] Univ Grenoble Alpes, INAC SCIB, F-38054 Grenoble 9, France
[8] CEA Grenoble, INAC SCIB, F-38054 Grenoble 9, France
关键词
SNS NANOCRYSTALS; SEMICONDUCTOR NANORODS; COLLOIDAL SYNTHESIS; SHAPE CONTROL; SOLAR-CELLS; FILMS; PHOTODETECTORS; NANORIBBONS; REFINEMENT; GROWTH;
D O I
10.1021/jacs.5b05576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin sulfide nanoparticles have a great potential for use in a broad range of applications related to solar energy conversion (photovoltaics, photocatalysis), electrochemical energy storage, and thermoelectrics. The development of chemical synthesis methods allowing for the precise control of size, shape, composition, and crystalline phase is essential. We present a novel approach giving access to monodisperse square SnS nanoplatelets, whose dimensions can be adjusted in the range of 4-15 nm (thickness) and 15-100 nm (edge length). Their growth occurs via controlled assembly of initially formed polyhedral seed nanoparticles, which themselves originate from an intermediate tetrachlorotin-oleate complex. The SnS nanoplatelets crystallize in the alpha-SnS orthorhombic herzenbergite structure (space group Pnma) with no evidence of secondary phases. Electron tomography, high angle annular dark field scanning transmission electron microscopy and electron diffraction combined with image simulations evidence the presence of ordered Sn vacancy rich (100) planes within the SnS nanoplatelets, in accordance with their slightly S-rich composition observed. When using elemental sulfur instead of thioacetarnide as the sulfur source, the same reaction yields small (2-3 nm) spherical SnS2 nanoparticles, which crystallize in the berndtite 4H crystallographic phase (space group P3m1). They exhibit quantum confinement (E-g = 2.8 eV vs 2.2 eV in the bulk) and room temperature photoluminescence. By means of electrochemical measurements we determined their electron affinity EA = -4.8 eV, indicating the possibility to use them as a substitute for CdS (EA = -4.6 eV) in the buffer layer of thin film solar cells.
引用
收藏
页码:9943 / 9952
页数:10
相关论文
共 51 条
[1]   Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction [J].
Baranov, Dmitry ;
Fiore, Angela ;
van Huis, Marijn ;
Giannini, Cinzia ;
Falqui, Andrea ;
Lafont, Ugo ;
Zandbergen, Henny ;
Zanella, Marco ;
Cingolani, Roberto ;
Manna, Liberato .
NANO LETTERS, 2010, 10 (02) :743-749
[2]   The interpretation of HREM images of supported metal catalysts using image simulation:: profile view images [J].
Bernal, S ;
Botana, FJ ;
Calvino, JJ ;
López-Cartes, C ;
Pérez-Omil, JA ;
Rodríguez-Izquierdo, JM .
ULTRAMICROSCOPY, 1998, 72 (3-4) :135-164
[3]   Achieving optimum carrier concentrations in p-doped SnS thermoelectrics [J].
Bhattacharya, Sandip ;
Gunda, N. S. Harsha ;
Stern, Robin ;
Jacobs, Stephane ;
Chmielowski, Radoslaw ;
Dennler, Gilles ;
Madsen, Georg K. H. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :9161-9166
[4]   Synthesis and Crystallographic Analysis of Shape-Controlled SnS Nanocrystal Photocatalysts: Evidence for a Pseudotetragonal Structural Modification [J].
Biacchi, Adam J. ;
Vaughn, Dimitri D., II ;
Schaak, Raymond E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (31) :11634-11644
[5]   The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct [J].
Black, K. ;
Jones, A. C. ;
Alexandrou, I. ;
Heys, P. N. ;
Chalker, P. R. .
NANOTECHNOLOGY, 2010, 21 (04)
[6]   Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2 [J].
Burton, Lee A. ;
Colombara, Diego ;
Abellon, Ruben D. ;
Grozema, Ferdinand C. ;
Peter, Laurence M. ;
Savenije, Tom J. ;
Dennler, Gilles ;
Walsh, Aron .
CHEMISTRY OF MATERIALS, 2013, 25 (24) :4908-4916
[7]   Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts [J].
Chao, Junfeng ;
Wang, Zhuoran ;
Xu, Xin ;
Xiang, Qingyi ;
Song, Weifeng ;
Chen, Gui ;
Hu, Jiebo ;
Chen, Di .
RSC ADVANCES, 2013, 3 (08) :2746-2753
[8]   Nanocrystal shape and nanojunction effects on electron transport in nanocrystal-assembled bulks [J].
Chiu, Shao-Chien ;
Jhang, Jia-Sin ;
Lin, Yen-Fu ;
Hsu, Shih-Ying ;
Fang, Jiye ;
Jian, Wen-Bin .
NANOSCALE, 2013, 5 (18) :8555-8559
[9]   SnS thin films realized from colloidal nanocrystal inks [J].
de Kergommeaux, Antoine ;
Faure-Vincent, Jerome ;
Pron, Adam ;
de Bettignies, Remi ;
Reiss, Peter .
THIN SOLID FILMS, 2013, 535 :376-379
[10]   Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119Sn-Mossbauer Spectroscopy [J].
de Kergommeaux, Antoine ;
Faure-Vincent, Jerome ;
Pron, Adam ;
de Bettignies, Remi ;
Malaman, Bernard ;
Reiss, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (28) :11659-11666