Quenched tail estimate for the random walk in random scenery and in random layered conductance II

被引:3
作者
Deuschel, Jean-Dominique [1 ]
Fukushima, Ryoki [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[3] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2020年 / 25卷
关键词
random walk; random scenery; spectral dimension; random conductance model; layered media; INVARIANCE-PRINCIPLE; LARGE DEVIATIONS; LIFSHITZ TAIL; LIMIT-THEOREM; SURVIVAL; ASYMPTOTICS; MODEL;
D O I
10.1214/20-EJP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This is a continuation of our earlier work [Stochastic Processes and their Applications, 129(1), pp.102-128, 2019] on the random walk in random scenery and in random layered conductance. We complete the picture of upper deviation of the random walk in random scenery, and also prove a bound on lower deviation probability. Based on these results, we determine asymptotics of the return probability, a certain moderate deviation probability, and the Green function of the random walk in random layered conductance.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 27 条
  • [1] Andres MP, 2019, EINSTEIN-SAO PAULO, V17, DOI [10.31744/einstein_journal/2019ao4583, 10.31744/einstein_journal/2019AO4583]
  • [2] Harnack inequalities on weighted graphs and some applications to the random conductance model
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) : 931 - 977
  • [3] [Anonymous], 1968, INTRO PROBABILITY TH
  • [4] Large deviations for Brownian motion in a random scenery
    Asselah, A
    Castell, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (04) : 497 - 527
  • [5] INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES
    Barlow, M. T.
    Deuschel, J-D.
    [J]. ANNALS OF PROBABILITY, 2010, 38 (01) : 234 - 276
  • [6] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    [J]. ANNALS OF PROBABILITY, 2020, 48 (01) : 296 - 316
  • [7] Ben Arous G, 2000, ANN PROBAB, V28, P1470
  • [8] Scaling limit for trap models on zd
    Ben Arous, Gerard
    Cerny, Jiri
    [J]. ANNALS OF PROBABILITY, 2007, 35 (06) : 2356 - 2384
  • [9] Long-time tails in the parabolic Anderson model with bounded potential
    Biskup, M
    König, W
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 636 - 682
  • [10] Recent progress on the Random Conductance Model
    Biskup, Marek
    [J]. PROBABILITY SURVEYS, 2011, 8 : 294 - 373