机构:
Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
Univ Tsukuba, Inst Math, Tsukuba, Ibaraki, JapanTech Univ Berlin, Inst Math, Berlin, Germany
Fukushima, Ryoki
[2
,3
]
机构:
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[3] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki, Japan
来源:
ELECTRONIC JOURNAL OF PROBABILITY
|
2020年
/
25卷
关键词:
random walk;
random scenery;
spectral dimension;
random conductance model;
layered media;
INVARIANCE-PRINCIPLE;
LARGE DEVIATIONS;
LIFSHITZ TAIL;
LIMIT-THEOREM;
SURVIVAL;
ASYMPTOTICS;
MODEL;
D O I:
10.1214/20-EJP478
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This is a continuation of our earlier work [Stochastic Processes and their Applications, 129(1), pp.102-128, 2019] on the random walk in random scenery and in random layered conductance. We complete the picture of upper deviation of the random walk in random scenery, and also prove a bound on lower deviation probability. Based on these results, we determine asymptotics of the return probability, a certain moderate deviation probability, and the Green function of the random walk in random layered conductance.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 27 条
[1]
Andres MP, 2019, EINSTEIN-SAO PAULO, V17, DOI [10.31744/einstein_journal/2019ao4583, 10.31744/einstein_journal/2019AO4583]
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
Univ South Bohemia, Sch Econ, Ceske Budejovice, Czech RepublicUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
Univ South Bohemia, Sch Econ, Ceske Budejovice, Czech RepublicUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA