Nitrogen removal intensification of aerobic granular sludge through bioaugmentation with "heterotrophic nitrification-aerobic denitrification" consortium during petroleum wastewater treatment

被引:23
|
作者
Wang, Qinghong [1 ]
Kong, Jiawen [1 ]
Liang, Jiahao [2 ]
El-Din, Mohamed Gamal [3 ]
Zhao, Peng [4 ]
Xie, Wenyu [2 ]
Chen, Chunmao [1 ]
机构
[1] China Univ Petr, State Key Lab Petr Pollut Control, Beijing Key Lab Oil & Gas Pollut Control, Beijing 102249, Peoples R China
[2] Guangdong Univ Petrochem Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Petrochem Pollut Proc & Co, Key Lab Petrochem Pollut Control,Guangdong Higher, Maoming 525000, Guangdong, Peoples R China
[3] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G IH9, Canada
[4] Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing 100101, Peoples R China
关键词
Aerobic granular sludge; Bioaugmentation; Heterotrophic nitrification-aerobic denitrification; Nitrogen removal; Petroleum wastewater; DENITRIFYING BACTERIUM; PERFORMANCE; BIODEGRADATION; POLYMER; BATCH; MBBR;
D O I
10.1016/j.biortech.2022.127719
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The bioaugmentation potential of aerobic granular sludge (AGS) was investigated using heterotrophic nitrification-aerobic denitrification (HN-AD) bacterial consortium to improve nitrogen removal during petroleum wastewater treatment. An efficient HN-AD consortium was constructed by mixing Pseudomonas mendocina K0, Brucella sp. K1, Pseudomonas putida T4 and Paracoccus sp. T9. AGS bioaugmented by immobilized HN-AD consortium enhanced nitrogen removal, which showed NH4+-N and TN removal efficiency of 92.4% and 79.8%, respectively. The immobilized consortium addition facilitated larger AGS formation, while granules > 2.0 mm accounted for 16.7% higher than that of control (6.7%). Further, the abundance of napA gene was 4-times higher in the bioaugmented AGS as compared to the control, which demonstrated the long-term stability of HN-AD consortium in the bioreactor. The bioaugmented AGS also showed a higher abundance of xenobiotics biodegradation and nitrogen metabolism. These results highlight that bioaugmentation of AGS technology could be effectively used for enhanced denitrification of petroleum wastewater.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The advance of heterotrophic nitrification aerobic denitrification microorganisms in wastewater treatment
    Lou, Liu
    Luo, Huiying
    Fang, Jun
    Liu, Gang
    BIORESOURCE TECHNOLOGY REPORTS, 2023, 22
  • [22] Removal of ammonia nitrogen from residual ammonium leaching solution by heterotrophic nitrification-aerobic denitrification process
    Hu, Jingang
    Su, Qi
    Xiao, Chunqiao
    Deng, Xiangyi
    Liu, Xuemei
    Feng, Jian
    Chi, Ruan
    ENVIRONMENTAL TECHNOLOGY, 2023, 44 (23) : 3479 - 3490
  • [23] Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4
    Joo, HS
    Hirai, M
    Shoda, M
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2005, 100 (02) : 184 - 191
  • [24] Will the removal of carbon, nitrogen and mixed disinfectants occur simultaneously: The key role of heterotrophic nitrification-aerobic denitrification strain
    Guo, Yi
    Gao, Jingfeng
    Zhang, Yi
    Xie, Tian
    Wang, Qian
    An, Jiawen
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 480
  • [25] Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process
    Pan, Zhanglei
    Zhou, Jian
    Lin, Ziyuan
    Wang, Yingmu
    Zhao, Pengcheng
    Zhou, Jiong
    Liu, Shihu
    He, Xuejie
    BIORESOURCE TECHNOLOGY, 2020, 301 (301)
  • [26] Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24
    Li, Chune
    Yang, Jinshui
    Wang, Xin
    Wang, Entao
    Li, Baozhen
    He, Ruoxue
    Yuan, Hongli
    BIORESOURCE TECHNOLOGY, 2015, 182 : 18 - 25
  • [27] Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04
    He, Xiaoling
    Sun, Qi
    Xu, Tengyao
    Dai, Meng
    Wei, Dongsheng
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2019, 42 (05) : 853 - 866
  • [28] Heterotrophic nitrification-aerobic denitrification performance in a granular sequencing batch reactor supported by next generation sequencing
    Bucci, Paula
    Coppotelli, Bibiana
    Morelli, Irma
    Zaritzky, Noemi
    Caravelli, Alejandro
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2021, 160
  • [29] MICROBIAL FUEL CELLS WITH THE PERFORMANCE OF WASTEWATER DENITRIFICATION BASED ON HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFIER BACTERIA
    Qiao, Nan
    Wang, Gang
    Yang, Xiao-hang
    Yin, Xu
    Gao, Bo
    Yu, Da-yu
    FRESENIUS ENVIRONMENTAL BULLETIN, 2011, 20 (10): : 2610 - 2615
  • [30] Removal of Urea by Heterotrophic Nitrification-Aerobic Denitrification Mixed Strains and Effects of Heavy Metals and Salinity
    Wang M.-M.
    Cao G.
    Zhang D.
    Feng N.-X.
    Pan Y.-Z.
    Huanjing Kexue/Environmental Science, 2020, 41 (06): : 2787 - 2795