Transplanckian entanglement entropy

被引:10
作者
Chang, D [1 ]
Chu, CS
Lin, FL
机构
[1] Natl Tsing Hua Univ, Dept Phys, Hsinchu 300, Taiwan
[2] Univ Durham, Dept Math, Durham DH1 3LE, England
[3] Natl Tsing Hua Univ, Div Phys, Natl Ctr Theoret Sci, Hsinchu 300, Taiwan
关键词
D O I
10.1016/j.physletb.2003.12.060
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:192 / 198
页数:7
相关论文
共 14 条
[1]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[2]   HAWKING RADIATION WITHOUT TRANS-PLANCKIAN FREQUENCIES [J].
BROUT, R ;
MASSAR, S ;
PARENTANI, R ;
SPINDEL, P .
PHYSICAL REVIEW D, 1995, 52 (08) :4559-4568
[3]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[4]   Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes [J].
Cardoso, GL ;
de Wit, B ;
Mohaupt, T .
NUCLEAR PHYSICS B, 2000, 567 (1-2) :87-110
[5]   Corrections to macroscopic supersymmetric black-hole entropy [J].
Cardoso, GL ;
de Wit, B ;
Mohaupt, T .
PHYSICS LETTERS B, 1999, 451 (3-4) :309-316
[6]   Logarithmic corrections to black hole entropy, from the Cardy formula [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :4175-4186
[7]   Remarks on inflation and noncommutative geometry [J].
Chu, CS ;
Greene, BR ;
Shiu, G .
MODERN PHYSICS LETTERS A, 2001, 16 (34) :2231-2240
[8]   Hawking spectrum and high frequency dispersion [J].
Corley, S ;
Jacobson, T .
PHYSICAL REVIEW D, 1996, 54 (02) :1568-1586
[9]   CONICAL SINGULARITY AND QUANTUM CORRECTIONS TO THE ENTROPY OF A BLACK-HOLE [J].
SOLODUKHIN, SN .
PHYSICAL REVIEW D, 1995, 51 (02) :609-617
[10]   ENTROPY AND AREA [J].
SREDNICKI, M .
PHYSICAL REVIEW LETTERS, 1993, 71 (05) :666-669