Exponentially stable equilibria to an indefinite nonlinear Neumann problem in smooth domains

被引:11
作者
Madeira, Gustavo Ferron [1 ]
do Nascimento, Arnaldo Simal [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2011年 / 18卷 / 05期
关键词
Nonconstant stable equilibria; Nonlinear boundary condition; Indefinite weight; Nonlinear heat equation; Bistable function; BOUNDARY-CONDITIONS; EQUATIONS; REGULARITY;
D O I
10.1007/s00030-011-0109-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of two nonconstant exponentially stable equilibria to the heat equation supplied with a nonlinear Neumann boundary condition in any smooth n-dimensional domain (n >= 2), independently of its geometry. The Neumann boundary condition reflects the fact that the flux on the boundary is proportional to the product of a prescribed bistable function of the density or concentration with an indefinite weight. Such solutions are obtained via variational methods, by minimizing the corresponding energy functional on suitable invariant sets to the semiflow generated by the parabolic problem. But this is possible only if the parameter in the boundary condition is sufficiently large, otherwise we prove using the Implicit Function Theorem the uniqueness of constant equilibrium solutions. The same theorem allows us to derive isolation and smooth dependence on the parameter for nonconstant exponentially stable equilibria found.
引用
收藏
页码:599 / 614
页数:16
相关论文
共 18 条
[11]   Stability of local minima and stable nonconstant equilibria [J].
Cònsul, N ;
Solà-Morales, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) :61-81
[12]  
Grisvard P., 1985, Elliptic Problems in Nonsmooth Domains, V24
[13]  
HENRY D, 1989, LECT NOTES MATHAMATI, V840
[14]   Existence and regularity for a nonlinear boundary flow problem of population genetics [J].
Madeira, Gustavo Ferron .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :974-981
[15]  
Pao C. V., 2004, Nonlinear Parabolic and Elliptic Equations, DOI DOI 10.1007/978-1-4615-3034-3
[16]  
Struwe M., 2000, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, V3
[17]  
Umezu K., 2006, Appl. Anal., V85, P1313
[18]  
Valent T., 1988, BOUND VALUE PROBL, DOI DOI 10.1007/978-1-4612-3736-5