Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network

被引:44
作者
Bo, Weichen [1 ]
Qin, Dongya [1 ]
Zheng, Xin [1 ]
Wang, Yue [1 ]
Ding, Botian [1 ]
Li, Yinghong [2 ]
Liang, Guizhao [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Bioinformat, Chongqing Key Lab Big Data Bio Intelligence, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Structure-taste relationship; Convolutional neural networks (CNN); Multi-layer perceptron (MLP); Bitterant prediction; Sweetener prediction; IN-SILICO; PARAMETERS; RECEPTORS;
D O I
10.1016/j.foodres.2022.110974
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Identifying the taste characteristics of molecules is essential for the expansion of their application in health foods and drugs. It is time-consuming and consumable to identify the taste characteristics of a large number of compounds through experiments. To date, computational methods have become an important technique for identifying molecular taste. In this work, bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener are predicted using three structure-taste relationship models based on the convolutional neural networks (CNN), multi-layer perceptron (MLP)-Descriptor, and MLP-Fingerprint. The results showed that all three models have unique characteristics in the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/ sweetener. For the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener, the MLP-Fingerprint model exhibited a higher predictive AUC value (0.94, 0.94 and 0.95) than the MLP-Descriptor model (0.94, 0.84 and 0.87) and the CNN model (0.88, 0.90 and 0.91) by external validation, respectively. The MLP-Descriptor model showed a distinct structure-taste relationship of the studied molecules, which helps to understand the key properties associated with bitterants and sweeteners. The CNN model requires only a simple 2D chemical map as input to automate feature extraction for favorable prediction. The obtained models achieved accurate predictions of bitterant/non-bitterant, sweetener/non-sweetener and bitterant and sweetener, providing vital references for the identification of bioactive molecules and toxic substances.
引用
收藏
页数:12
相关论文
共 57 条
[41]   Deep learning in bioinformatics [J].
Min, Seonwoo ;
Lee, Byunghan ;
Yoon, Sungroh .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) :851-869
[42]  
Pal Sankar K, 1992, Multilayer perceptron, fuzzy sets, classifiaction
[43]  
Pizio A. D., 2018, BITTER SWEET TASTING, Patent No. S0304394018302908
[44]  
Puerta L., MOL DESCRIPTOR PREDI
[45]  
Rish I., 2001, IJCAI 2001 Work Empir Methods Artif Intell, VVolume 3, P41
[46]   STATISTICAL QUESTION Spearman's rank correlation coefficient [J].
Sedgwick, Philip .
BMJ-BRITISH MEDICAL JOURNAL, 2014, 349
[47]   The MicroArray Quality Control (MAQC)-IIII study of common practices for the development and validation of microarray-based predictive models [J].
Shi, Leming ;
Campbell, Gregory ;
Jones, Wendell D. ;
Campagne, Fabien ;
Wen, Zhining ;
Walker, Stephen J. ;
Su, Zhenqiang ;
Chu, Tzu-Ming ;
Goodsaid, Federico M. ;
Pusztai, Lajos ;
Shaughnessy, John D., Jr. ;
Oberthuer, Andre ;
Thomas, Russell S. ;
Paules, Richard S. ;
Fielden, Mark ;
Barlogie, Bart ;
Chen, Weijie ;
Du, Pan ;
Fischer, Matthias ;
Furlanello, Cesare ;
Gallas, Brandon D. ;
Ge, Xijin ;
Megherbi, Dalila B. ;
Symmans, W. Fraser ;
Wang, May D. ;
Zhang, John ;
Bitter, Hans ;
Brors, Benedikt ;
Bushel, Pierre R. ;
Bylesjo, Max ;
Chen, Minjun ;
Cheng, Jie ;
Cheng, Jing ;
Chou, Jeff ;
Davison, Timothy S. ;
Delorenzi, Mauro ;
Deng, Youping ;
Devanarayan, Viswanath ;
Dix, David J. ;
Dopazo, Joaquin ;
Dorff, Kevin C. ;
Elloumi, Fathi ;
Fan, Jianqing ;
Fan, Shicai ;
Fan, Xiaohui ;
Fang, Hong ;
Gonzaludo, Nina ;
Hess, Kenneth R. ;
Hong, Huixiao ;
Huan, Jun .
NATURE BIOTECHNOLOGY, 2010, 28 (08) :827-U109
[48]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[49]   BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules [J].
Tuwani, Rudraksh ;
Wadhwa, Somin ;
Bagler, Ganesh .
SCIENTIFIC REPORTS, 2019, 9 (1)
[50]   Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology [J].
van Erkel, AR ;
Pattynama, PMT .
EUROPEAN JOURNAL OF RADIOLOGY, 1998, 27 (02) :88-94