Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network

被引:30
作者
Bo, Weichen [1 ]
Qin, Dongya [1 ]
Zheng, Xin [1 ]
Wang, Yue [1 ]
Ding, Botian [1 ]
Li, Yinghong [2 ]
Liang, Guizhao [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Bioinformat, Chongqing Key Lab Big Data Bio Intelligence, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Structure-taste relationship; Convolutional neural networks (CNN); Multi-layer perceptron (MLP); Bitterant prediction; Sweetener prediction; IN-SILICO; PARAMETERS; RECEPTORS;
D O I
10.1016/j.foodres.2022.110974
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Identifying the taste characteristics of molecules is essential for the expansion of their application in health foods and drugs. It is time-consuming and consumable to identify the taste characteristics of a large number of compounds through experiments. To date, computational methods have become an important technique for identifying molecular taste. In this work, bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener are predicted using three structure-taste relationship models based on the convolutional neural networks (CNN), multi-layer perceptron (MLP)-Descriptor, and MLP-Fingerprint. The results showed that all three models have unique characteristics in the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/ sweetener. For the prediction of bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener, the MLP-Fingerprint model exhibited a higher predictive AUC value (0.94, 0.94 and 0.95) than the MLP-Descriptor model (0.94, 0.84 and 0.87) and the CNN model (0.88, 0.90 and 0.91) by external validation, respectively. The MLP-Descriptor model showed a distinct structure-taste relationship of the studied molecules, which helps to understand the key properties associated with bitterants and sweeteners. The CNN model requires only a simple 2D chemical map as input to automate feature extraction for favorable prediction. The obtained models achieved accurate predictions of bitterant/non-bitterant, sweetener/non-sweetener and bitterant and sweetener, providing vital references for the identification of bioactive molecules and toxic substances.
引用
收藏
页数:12
相关论文
共 57 条
  • [41] Deep learning in bioinformatics
    Min, Seonwoo
    Lee, Byunghan
    Yoon, Sungroh
    [J]. BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) : 851 - 869
  • [42] Pal S.K., 1992, MULTILAYER PERCEPTRO
  • [43] Pizio A. D., 2018, BITTER SWEET TASTING, Patent No. S0304394018302908
  • [44] Puerta L., MOL DESCRIPTOR PREDI
  • [45] Rish I., 2001, P INT JOINT C ART IN, P41
  • [46] STATISTICAL QUESTION Spearman's rank correlation coefficient
    Sedgwick, Philip
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2014, 349
  • [47] The MicroArray Quality Control (MAQC)-IIII study of common practices for the development and validation of microarray-based predictive models
    Shi, Leming
    Campbell, Gregory
    Jones, Wendell D.
    Campagne, Fabien
    Wen, Zhining
    Walker, Stephen J.
    Su, Zhenqiang
    Chu, Tzu-Ming
    Goodsaid, Federico M.
    Pusztai, Lajos
    Shaughnessy, John D., Jr.
    Oberthuer, Andre
    Thomas, Russell S.
    Paules, Richard S.
    Fielden, Mark
    Barlogie, Bart
    Chen, Weijie
    Du, Pan
    Fischer, Matthias
    Furlanello, Cesare
    Gallas, Brandon D.
    Ge, Xijin
    Megherbi, Dalila B.
    Symmans, W. Fraser
    Wang, May D.
    Zhang, John
    Bitter, Hans
    Brors, Benedikt
    Bushel, Pierre R.
    Bylesjo, Max
    Chen, Minjun
    Cheng, Jie
    Cheng, Jing
    Chou, Jeff
    Davison, Timothy S.
    Delorenzi, Mauro
    Deng, Youping
    Devanarayan, Viswanath
    Dix, David J.
    Dopazo, Joaquin
    Dorff, Kevin C.
    Elloumi, Fathi
    Fan, Jianqing
    Fan, Shicai
    Fan, Xiaohui
    Fang, Hong
    Gonzaludo, Nina
    Hess, Kenneth R.
    Hong, Huixiao
    Huan, Jun
    [J]. NATURE BIOTECHNOLOGY, 2010, 28 (08) : 827 - U109
  • [48] Srivastava N, 2014, J MACH LEARN RES, V15, P1929
  • [49] BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules
    Tuwani, Rudraksh
    Wadhwa, Somin
    Bagler, Ganesh
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [50] Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology
    van Erkel, AR
    Pattynama, PMT
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 1998, 27 (02) : 88 - 94