ASYMPTOTICS OF THE BERGMAN FUNCTION FOR SEMIPOSITIVE HOLOMORPHIC LINE BUNDLES

被引:3
作者
Cho, Koji [1 ]
Kamimoto, Joe [1 ]
Nose, Toshihiro [1 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Bergman functions; semipositive holomorphic line bundles; global peak sections; asymptotic expansion; Newton polyhedra; Laplace integrals; KERNEL; METRICS; THEOREM;
D O I
10.2206/kyushujm.65.349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an asymptotic expansion of the Bergman function at a degenerate point is given for high powers of semipositive holomorphic line bundles on compact Kahler manifolds, whose Hermitian metrics have some kind of quasihomogeneous properties. In the sense of pointwise asymptotics, this expansion is a generalization of the expansion of Tian Zelditch-Catlin-Lu in the positive line bundle case.
引用
收藏
页码:349 / 382
页数:34
相关论文
共 11 条