Hamilton connectivity of line graphs and claw-free graphs

被引:14
|
作者
Hu, ZQ [1 ]
Tian, F
Wei, B
机构
[1] Cent China Normal Univ, Fac Math & Stat, Hubei 430079, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Hamilton-connected; hamiltonian cycle; line graph; claw-free graph; spanning trail;
D O I
10.1002/jgt.20099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and let V-0 = {v epsilon V(G): d(G)(v)= 6}. We show in this paper that: (1) if G is a 6-connected line graph and if vertical bar V-0 vertical bar <= 29 or G[V-0] contains at most 5 vertex disjoint K-4's, then G is Hamilton-connected; (ii) every 8-connected claw-free graph is Hamilton-connected. Several related results known before are generalized. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [31] Hamiltonian Connectedness in Claw-Free Graphs
    Chen, Xiaodong
    Li, Mingchu
    Ma, Xin
    Fan, Xinxin
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1259 - 1267
  • [32] Quadrangularly connected claw-free graphs
    Li, MingChu
    Guo, Cheng
    Xiong, Liming
    Li, Dengxin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1205 - 1211
  • [33] Counting claw-free cubic graphs
    Palmer, EM
    Read, RC
    Robinson, RW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (01) : 65 - 73
  • [34] Hamiltonian Connectedness in Claw-Free Graphs
    Xiaodong Chen
    Mingchu Li
    Xin Ma
    Xinxin Fan
    Graphs and Combinatorics, 2013, 29 : 1259 - 1267
  • [35] Closure concepts for claw-free graphs
    Broersma, HJ
    Trommel, H
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 231 - 238
  • [36] Hamilton-connected claw-free graphs with Ore-degree conditions
    Liu, Xia
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 130 - 139
  • [37] On factors of 4-connected claw-free graphs
    Broersma, HJ
    Kriesell, M
    Ryjácek, Z
    JOURNAL OF GRAPH THEORY, 2001, 37 (02) : 125 - 136
  • [38] A NOTE ON CONNECTED FACTORS IN CLAW-FREE GRAPHS
    XU Baoguang
    JournalofSystemsScienceandComplexity, 2001, (01) : 91 - 92
  • [39] Which claw-free graphs are strongly perfect?
    Wang, Hui-Yu
    DISCRETE MATHEMATICS, 2006, 306 (19-20) : 2602 - 2629
  • [40] Claw-Free Circular-Perfect Graphs
    Pecher, Arnaud
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 163 - 172