Hamilton connectivity of line graphs and claw-free graphs

被引:14
|
作者
Hu, ZQ [1 ]
Tian, F
Wei, B
机构
[1] Cent China Normal Univ, Fac Math & Stat, Hubei 430079, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Hamilton-connected; hamiltonian cycle; line graph; claw-free graph; spanning trail;
D O I
10.1002/jgt.20099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and let V-0 = {v epsilon V(G): d(G)(v)= 6}. We show in this paper that: (1) if G is a 6-connected line graph and if vertical bar V-0 vertical bar <= 29 or G[V-0] contains at most 5 vertex disjoint K-4's, then G is Hamilton-connected; (ii) every 8-connected claw-free graph is Hamilton-connected. Several related results known before are generalized. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [21] Clique-Coloring Claw-Free Graphs
    Liang, Zuosong
    Shan, Erfang
    Kang, Liying
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1473 - 1488
  • [22] On stable cutsets in claw-free graphs and planar graphs
    Le, Van Bang
    Mosca, Raffaele
    Muller, Haiko
    JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (02) : 256 - 276
  • [23] On Stability of Hamilton-Connectedness Under the 2-Closure in claw-Free Graphs
    Ryjacek, Zdenek
    Vrana, Petr
    JOURNAL OF GRAPH THEORY, 2011, 66 (02) : 137 - 151
  • [24] The Cycle Spectrum of Claw-free Hamiltonian Graphs
    Jonas Eckert
    Felix Joos
    Dieter Rautenbach
    Graphs and Combinatorics, 2016, 32 : 93 - 101
  • [25] On Coloring a Class of Claw-free Graphs
    Dai, Yingjun
    Foley, Angele M.
    Hoang, Chinh T.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 369 - 377
  • [26] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H
    Veldman, HJ
    Verschut, A
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 781 - 789
  • [27] Circumferences of regular claw-free graphs
    Li, MingChu
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2682 - 2694
  • [28] Counting claw-free cubic graphs
    Palmer, Edgar M.
    Read, Ronald C.
    Robinson, Robert W.
    2003, Society for Industrial and Applied Mathematics Publications (16) : 65 - 73
  • [29] ON HAMILTONIAN CYCLES IN CLAW-FREE CUBIC GRAPHS
    Mohr, Elena
    Rautenbach, Dieter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 309 - 313
  • [30] A Note on Contracting Claw-Free Graphs
    Fiala, Jiri
    Kaminski, Marcin
    Paulusma, Daniel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (02) : 223 - 232