Hierarchy-Aware Temporal Knowledge Graph Embedding

被引:0
|
作者
Zhang, Jiaming [1 ]
Yu, Hong [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
semantic hierarchy; temporal knowledge graph; temporal information; embedding model;
D O I
10.1109/ICKG55886.2022.00054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph embedding has attracted widespread attention in recent years, and since knowledge graphs are dynamically updated in nature, the temporal information embedded is essential. Most of the knowledge graph embedding focuses on static KGs, while temporal knowledge graphs have been poorly studied. In the real-world, much structured knowledge is valid only within a specific temporality, i.e., the development of facts follows a temporal order. Therefore, more and more research works start to incorporate temporal information into knowledge graph representation learning, and the embedding of temporal knowledge graphs focuses on how to embed temporal information into the vector space. Most of the existing temporal knowledge graph embedding models do not model the semantic hierarchy, not fully exploiting the semantic information in the temporal knowledge graph. In this paper, we propose a hierarchy-aware temporal knowledge graph embedding (HA-TKGE), which maps temporal information into a polar coordinate system. The HA-TKGE is mainly inspired by the HAKE model. Specifically, the purpose of radial coordinates is to model temporal information at different levels, where entities with smaller radius are indicated at higher levels, and angular coordinates are intended to represent temporal information at the same level, which has approximately the same radial coordinates and different angles. The HA-TKGE model uses the nature of the polar coordinate system to represent the semantic hierarchy of temporal knowledge graphs and proves its effectiveness in the temporal node prediction task. Experiments show that the HA-TKGE model can effectively model the semantic hierarchy of temporal information and outperforms existing methods overall on the benchmark dataset for the temporal node prediction task.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 50 条
  • [31] Urban Multi-Source Spatio-Temporal Data Analysis Aware Knowledge Graph Embedding
    Zhao, Ling
    Deng, Hanhan
    Qiu, Linyao
    Li, Sumin
    Hou, Zhixiang
    Sun, Hai
    Chen, Yun
    SYMMETRY-BASEL, 2020, 12 (02):
  • [32] Temporal Knowledge Graph Embedding for Effective Service Recommendation
    Mezni, Haithem
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (05) : 3077 - 3088
  • [33] Hierarchy-Aware Representation Learning for Industrial IoT Vulnerability Classification
    Cao, Sicong
    Sun, Xiaobing
    Yang, Xinye
    Wu, Xiaoxue
    Liu, Wei
    Li, Bin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (10) : 11763 - 11773
  • [34] An Improvement of Diachronic Embedding for Temporal Knowledge Graph Completion
    Thuy-Anh Nguyen Thi
    Viet-Phuong Ta
    Xuan Hieu Phan
    Quang Thuy Ha
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT II, 2023, 13996 : 111 - 120
  • [35] ChronoR: Rotation Based Temporal Knowledge Graph Embedding
    Sadeghian, Ali
    Armandpour, Mohammadreza
    Colas, Anthony
    Wang, Daisy Zhe
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 6471 - 6479
  • [36] A survey on temporal knowledge graph embedding: Models and applications
    Zhang, Yuchao
    Kong, Xiangjie
    Shen, Zhehui
    Li, Jianxin
    Yi, Qiuhua
    Shen, Guojiang
    Dong, Bo
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [37] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [38] Specific Time Embedding for Temporal Knowledge Graph Completion
    Ni, Runyu
    Ma, Zhonggui
    Yu, Kaihang
    Xu, Xiaohan
    PROCEEDINGS OF 2020 IEEE 19TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2020), 2020, : 105 - 110
  • [39] Relation-aware Ensemble Learning for Knowledge Graph Embedding
    Yue, Ling
    Zhang, Yongqi
    Yao, Quanming
    Li, Yong
    Wu, Xian
    Zhang, Ziheng
    Lin, Zhenxi
    Zheng, Yefeng
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 16620 - 16631
  • [40] Position-Aware Relational Transformer for Knowledge Graph Embedding
    Li, Guangyao
    Sun, Zequn
    Hu, Wei
    Cheng, Gong
    Qu, Yuzhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11580 - 11594