Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network

被引:104
作者
Peng, Zhaoxia [1 ,2 ]
Wen, Guoguang [3 ]
Yang, Shichun [1 ]
Rahmani, Ahmed [4 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Engn Ctr Clean Energy & High Efficient Po, Beijing 100191, Peoples R China
[3] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[4] Ecole Cent Lille, UMR CNRS 9189, CRIStAL, F-59651 Villeneuve Dascq, France
基金
中国国家自然科学基金;
关键词
Formation control; Nonholonomic wheeled robots; Neural network; Graph theory; Filippov solution; FOLLOWER FORMATION CONTROL; COOPERATIVE CONTROL; TRACKING CONTROL; SYSTEMS;
D O I
10.1007/s11071-016-2910-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the distributed formation control problem for multiple nonholonomic wheeled mobile robots. A variable transformation is first proposed to convert the formation control problem into a state consensus problem. Then, when the dynamics of the mobile robots are considered, the distributed kinematic controllers and neural network torque controllers are derived for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern along the specified reference trajectory. The specified reference trajectory is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Moreover, the neural network torque controllers proposed in this work can tackle the dynamics of robots with unmodeled bounded disturbances and unstructured unmodeled dynamics. Some sufficient conditions are derived for accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.
引用
收藏
页码:605 / 622
页数:18
相关论文
共 36 条
[1]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/CBMS/092
[2]   Behavior-based formation control for multirobot teams [J].
Balch, T ;
Arkin, RC .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06) :926-939
[3]   Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme [J].
Chen, Jian ;
Sun, Dong ;
Yang, Jie ;
Chen, Haoyao .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (06) :727-747
[4]   Leader-follower formation control of nonholonomic mobile robots with input constraints [J].
Consolini, Luca ;
Morbidi, Fabio ;
Prattichizzo, Domenico ;
Tosques, Mario .
AUTOMATICA, 2008, 44 (05) :1343-1349
[5]  
Cortés J, 2008, IEEE CONTR SYST MAG, V28, P36, DOI 10.1109/MCS.2008.919306
[6]   A vision-based formation control framework [J].
Das, AK ;
Fierro, R ;
Kumar, V ;
Ostrowski, JP ;
Spletzer, J ;
Taylor, CJ .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (05) :813-825
[7]   Modeling and control of formations of nonholonomic mobile robots [J].
Desai, JP ;
Ostrowski, JP ;
Kumar, V .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :905-908
[8]   Neural Network Output Feedback Control of Robot Formations [J].
Dierks, Travis ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02) :383-399
[9]   Neural Network Control of Mobile Robot Formations Using RISE Feedback [J].
Dierks, Travis ;
Jagannathan, S. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (02) :332-347
[10]   Cooperative control of multiple nonholonomic mobile agents [J].
Dong, Wenjie ;
Farrell, Jay A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (06) :1434-1448