SOME BOUNDARY VALUE PROBLEMS ON THE UPPER HALF PLANE

被引:0
作者
Chaudhary, Arun [1 ]
Kumar, Ravindra [1 ]
机构
[1] Univ Delhi, Rajdhani Coll, Dept Math, Delhi 110015, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2021年 / 20卷 / 09期
关键词
Neumann; Dirichlet; Cauchy-Pompeiu; Gauss theorem; Boundary value problems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work provides explicit representation of Half-Neumann boundary value problem on the upper half plane. The solution of inhomogeneous polyanalytic equation arising from the combination of (n-1) Dirichlet and 1-Half Neumann boundary conditions is also determined on the upper half plane H.
引用
收藏
页码:1965 / 1976
页数:12
相关论文
共 14 条
[1]   Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs [J].
Agarwal, Praveen ;
Merker, Jochen ;
Schuldt, Gregor .
AXIOMS, 2021, 10 (02) :NA
[2]   Dirichlet Problems in Lens and Lune [J].
Akel, Mohamed ;
Mondal, Saiful R. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) :1029-1043
[3]   A hierarchy of integral operators [J].
Begehr, H ;
Hile, GN .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) :669-706
[4]  
Begehr H., 1994, COMPLEX ANAL METHODS
[5]  
Begehr H., 2005, Bol. Aosc Math. Venezolana, V12, P65
[6]   Boundary value problems in upper half plane [J].
Chaudhary, Arun ;
Kumar, Ajay .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (05) :441-448
[7]  
Gaertner F., 2006, THESIS FU BERLIN
[8]   The treatment of the Neumann boundary conditions for a new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes [J].
Idesman, A. ;
Dey, B. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
[9]  
KARACHIK V, 2012, INT J PURE APPL MATH, V0081, P00487
[10]  
Kumar A., 2008, J APPL FUNCTIONAL AN, V3, P399