Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study

被引:50
作者
Claussen, Jonathan C. [1 ,2 ,3 ]
Artiles, Mayra S. [1 ,2 ,4 ]
McLamore, Eric S. [1 ,2 ,3 ]
Mohanty, Subhashree [1 ,2 ,5 ]
Shi, Jin [1 ,2 ,5 ]
Rickus, Jenna L. [1 ,2 ,3 ,5 ]
Fisher, Timothy S. [1 ,2 ,4 ]
Porterfield, D. Marshall [1 ,2 ,3 ,5 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
NANOELECTRODE ARRAYS; GLUCOSE BIOSENSORS; GLASSY-CARBON; NANOPARTICLES; PLATINUM; ELECTRODES; BIOFUNCTIONALIZATION; FABRICATION; PROTEINS; DENSITY;
D O I
10.1039/c1jm11561h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3 sigma). These results combined with the biosensor fabrication scheme (in situ growth of SWCNTs, electrodeposition of metal nanoparticles, and facile enzyme immobilization protocol) create a biosensor that can potentially be scaled for integration into a wide range of applications including the treatment of neurological disorders.
引用
收藏
页码:11224 / 11231
页数:8
相关论文
共 54 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[3]   Nanoelectrodes, nanoelectrode arrays and their applications [J].
Arrigan, DWM .
ANALYST, 2004, 129 (12) :1157-1165
[4]   Electrochemically functionalized carbon nanotubes for device applications [J].
Balasubramanian, Kannan ;
Burghard, Marko .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (26) :3071-3083
[5]   Electrochemical nanoneedle biosensor based on multiwall carbon nanotube [J].
Boo, H ;
Jeong, RA ;
Park, S ;
Kim, KS ;
An, KH ;
Lee, YH ;
Han, JH ;
Kim, HC ;
Chung, TD .
ANALYTICAL CHEMISTRY, 2006, 78 (02) :617-620
[6]   Glutamate detection from nerve cells using a planar electrodes array integrated in a microtiter plate [J].
Castillo, J ;
Blöchl, A ;
Dennison, S ;
Schuhmann, W ;
Csöregi, E .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (10) :2116-2119
[7]   Interfacial bioelectrochemistry: Fabrication, properties and applications of functional nanostructured biointerfaces [J].
Chen, Da ;
Wang, Geng ;
Li, Jinghong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (06) :2351-2367
[8]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[9]   Transforming the Fabrication and Biofunctionalization of Gold Nanoelectrode Arrays into Versatile Electrochemical Glucose Biosensors [J].
Claussen, Jonathan C. ;
Wickner, Monique M. ;
Fisher, Timothy S. ;
Porterfield, D. Marshall .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (05) :1765-1770
[10]  
Claussen Jonathan C, 2010, J Diabetes Sci Technol, V4, P312