LINEAR MAPS PRESERVING TENSOR PRODUCTS OF RANK-ONE HERMITIAN MATRICES

被引:3
作者
Xu, Jinli [1 ]
Zheng, Baodong [1 ]
Fosner, Ajda [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
关键词
quantum information science; linear preserver; tensor product; rank-one matrix; Hermitian matrix; SPACES;
D O I
10.1017/S1446788714000603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n >= 2, let M-n be the set of n x n complex matrices and H-n the set of Hermitian matrices in M-n. We characterize injective linear maps phi : H-m1... ml -> H-n satisfying rank(A(1) circle times . . . circle times A(l)) = 1 double right arrow rank(phi (A(1) circle times . . . circle times A(l))) = 1 for all A(k) epsilon H-mk, k = 1, . . . , l, where l; m(1), . . . , m(l) >= 2 are positive integers. The necessity of the injectivity assumption is shown. Moreover, the connection of the problem to quantum information science is mentioned.
引用
收藏
页码:407 / 428
页数:22
相关论文
共 16 条
  • [1] Bourbaki N., 1989, ELEMENTS MATH, V2.2
  • [2] Chebotar M. A., 2007, FUNCTIONAL IDENTITIE
  • [3] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [4] Linear preservers and quantum information science
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (10) : 1377 - 1390
  • [5] The automorphism group of separable states in quantum information theory
    Friedland, Shmuel
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [6] Additive rank-1 preservers between spaces of Hermitian matrices
    Gao X.-Y.
    Zhang X.
    [J]. Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 183 - 199
  • [7] Jain A K., 1989, Fundamentals of digital image processing
  • [8] Characterizing operations preserving separability measures via linear preserver problems
    Johnston, Nathaniel
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (10) : 1171 - 1187
  • [9] Lane Saunders Mac, 1999, ALGEBRA
  • [10] Linear preservers of tensor product of unitary orbits, and product numerical range
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3797 - 3803