Solving optimal control problems by using hermite polynomials

被引:5
作者
Yari, Ayat Ollah [1 ]
Mirnia, Mirkamal [2 ]
机构
[1] Payame Noor Univ, Fac Math Sci, Dept Appl Math, POB 19395-3697, Tehran, Iran
[2] Univ Tabriz, Fac Math Sci, Dept Appl Math, Tabriz, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2020年 / 8卷 / 02期
关键词
Optimal control; Hermite polynomials; Best approximating; Operational matrix of derivative; HYBRID FUNCTIONS APPROACH; LINEAR-SYSTEMS;
D O I
10.22034/cmde.2020.29747.1433
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, one numerical method is presented for numerical approximation of linear constrained optimal control problems with quadratic performance index. The method with variable coefficients is based on Hermite polynomials. The properties of Hermite polynomials with the operational matrices of derivative are used to reduce optimal control problems to the solution of linear algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
引用
收藏
页码:314 / 329
页数:16
相关论文
共 48 条
[1]   Algorithm to determine the optimal solution of a boundary control problem [J].
Aliev, F. A. ;
Ismailov, N. A. ;
Mukhtarova, N. S. .
AUTOMATION AND REMOTE CONTROL, 2015, 76 (04) :627-633
[2]  
Aliev F.A., 2015, J MATH SCI, V208, P467
[3]  
Aliev FA., 1998, Optimization of linear control systems: analytical methods and computational algorithm
[4]   Bernstein polynomials for solving Abel's integral equation [J].
Alipour, Mohsen ;
Rostamy, Davood .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 3 (04) :403-412
[5]  
Alrawi S., 2004, THESIS
[6]  
[Anonymous], 2004, Optimal Control Theory: An Introduction, DOI DOI 10.1109/TAC.1972.1100008
[7]  
[Anonymous], 2009, Appl. Math. Sci
[8]   Nonlinear Constrained Optimal Control Problems and Cardinal Hermite Interpolant Multiscaling Functions [J].
Ashpazzadeh, Elmira ;
Lakestani, Mehrdad ;
Razzaghi, Mohsen .
ASIAN JOURNAL OF CONTROL, 2018, 20 (01) :558-567
[9]  
Avrile M., 1976, NONLINEAR PROGRAMMIN
[10]   A STUDY OF MATHEMATICAL-PROGRAMMING METHODS FOR STRUCTURAL OPTIMIZATION .2. NUMERICAL RESULTS [J].
BELEGUNDU, AD ;
ARORA, JS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (09) :1601-1623