Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

被引:217
作者
Raaijmakers, A. J. E. [1 ]
Raaymakers, B. W. [1 ]
Lagendijk, J. J. W. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, NL-3584 CX Utrecht, Netherlands
关键词
D O I
10.1088/0031-9155/53/4/006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in- air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water - lung - water phantoms, the ERE dose increase takes place at the water lung transition and the dose decreases at the lung - water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade- off between magnetic field dose effects and image quality of MR- guided radiotherapy systems.
引用
收藏
页码:909 / 923
页数:15
相关论文
共 16 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] Geant4 developments and applications
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Dubois, PA
    Asai, M
    Barrand, G
    Capra, R
    Chauvie, S
    Chytracek, R
    Cirrone, GAP
    Cooperman, G
    Cosmo, G
    Cuttone, G
    Daquino, GG
    Donszelmann, M
    Dressel, M
    Folger, G
    Foppiano, F
    Generowicz, J
    Grichine, V
    Guatelli, S
    Gumplinger, P
    Heikkinen, A
    Hrivnacova, I
    Howard, A
    Incerti, S
    Ivanchenko, V
    Johnson, T
    Jones, F
    Koi, T
    Kokoulin, R
    Kossov, M
    Kurashige, H
    Lara, V
    Larsson, S
    Lei, F
    Link, O
    Longo, F
    Maire, M
    Mantero, A
    Mascialino, B
    McLaren, I
    Lorenzo, PM
    Minamimoto, K
    Murakami, K
    Nieminen, P
    Pandola, L
    Parlati, S
    Peralta, L
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) : 270 - 278
  • [3] Fallone B, 2007, AAPM MINN 49 ANN M
  • [4] Flat-panel cone-beam computed tomography for image-guided radiation therapy
    Jaffray, DA
    Siewerdsen, JH
    Wong, JW
    Martinez, AA
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 53 (05): : 1337 - 1349
  • [5] Magnetic resonance imaging for adaptive cobalt tomotherapy: A proposal
    Kron, Tomas
    Eyles, David
    Schreiner, John L.
    Battista, Jerry
    [J]. JOURNAL OF MEDICAL PHYSICS, 2006, 31 (04) : 242 - 254
  • [6] LAGENDIJK JJW, 2007, IN PRESS RADIOTHER O
  • [7] LAGENDIJK JJW, 2000, ESTRO ISTANBUL 19 AN
  • [8] TOMOTHERAPY - A NEW CONCEPT FOR THE DELIVERY OF DYNAMIC CONFORMAL RADIOTHERAPY
    MACKIE, TR
    HOLMES, T
    SWERDLOFF, S
    RECKWERDT, P
    DEASY, JO
    YANG, J
    PALIWAL, B
    KINSELLA, T
    [J]. MEDICAL PHYSICS, 1993, 20 (06) : 1709 - 1719
  • [9] Comparison of megavoltage position verification for prostate irradiation based on bony anatomy and implanted fiducials
    Nederveen, AJ
    Dehnad, H
    van der Heide, UA
    van Moorselaar, RJA
    Hofman, P
    Lagendijk, JJW
    [J]. RADIOTHERAPY AND ONCOLOGY, 2003, 68 (01) : 81 - 88
  • [10] Low-dose megavoltage cone-beam CT for radiation therapy
    Pouliot, J
    Bani-Hashemi, A
    Chen, J
    Svatos, M
    Ghelmansarai, F
    Mitschke, M
    Aubin, M
    Xia, P
    Morin, O
    Bucci, K
    Roach, M
    Hernandez, P
    Zheng, ZR
    Hristov, D
    Verhey, L
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 61 (02): : 552 - 560