Proteome of Human Perilymph

被引:62
作者
Lysaght, Andrew C. [1 ,2 ]
Kao, Shyan-Yuan [2 ]
Paulo, Joao A. [3 ,4 ,5 ]
Merchant, Saumil N. [1 ,2 ,6 ]
Steen, Hanno [3 ,4 ]
Stankovic, Konstantina M. [1 ,2 ,6 ]
机构
[1] Harvard & MIT, Program Speech & Hearing Biosci & Technol, Cambridge, MA 02139 USA
[2] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA
[3] Harvard Univ, Sch Med, Childrens Hosp Boston, Prote Ctr, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Childrens Hosp Boston, Dept Pathol, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Brigham & Womens Hosp, Div Gastroenterol Hepatol & Endoscopy, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA
关键词
perilymph; proteomics; mass spectrometry; human; vestibular schwannoma; HUMAN PLASMA PROTEOME; INNER-EAR; CEREBROSPINAL-FLUID; HEYMANN NEPHRITIS; HEARING-LOSS; VESTIBULAR SCHWANNOMAS; ACOUSTIC NEURINOMA; MASS-SPECTROMETRY; GUINEA-PIG; LOCALIZATION;
D O I
10.1021/pr200346q
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Current diagnostic tools limit a clinician's ability to discriminate between many possible causes of sensorineural hearing loss. This constraint leads to the frequent diagnosis of the idiopathic condition, leaving patients without a clear prognosis and only general treatment options. As a first step toward developing new diagnostic tools and improving patient care, we report the first use of liquid chromatography-tandem mass-spectrometry (LC-MS/MS) to map the proteome of human perilymph. Using LC-MS/MS, we analyzed four samples, two collected from patients with vestibular schwannoma (VS) and two from patients undergoing cochlear implantation (CI). For each cohort, one sample contained pooled specimens collected from five patients and the second contained a specimen obtained from a single patient. Of the 271 proteins identified with high confidence among the samples, 71 proteins were common in every sample and used to conservatively define the proteome of human perilymph. Comparison to human cerebrospinal fluid and blood plasma, as well as murine perilymph, showed significant similarity in protein content across fluids; however, a quantitative comparison was not possible. Fifteen candidate biomarkers of VS were identified by comparing VS and CI samples. This list will be used in future investigations targeted at discriminating between VS tumors associated with good versus poor hearing.
引用
收藏
页码:3845 / 3851
页数:7
相关论文
共 50 条
  • [41] Mapping and analyzing the human liver proteome: progress and potential
    Yu, Hongxiu
    Wang, Fang
    Lin, Ling
    Cao, Weiqian
    Liu, Yinkun
    Qin, Lunxiu
    Lu, Haojie
    He, Fuchu
    Shen, Huali
    Yang, Pengyuan
    EXPERT REVIEW OF PROTEOMICS, 2016, 13 (09) : 833 - 843
  • [42] Age-associated changes in human tear proteome
    Janika Nättinen
    Antti Jylhä
    Ulla Aapola
    Petri Mäkinen
    Roger Beuerman
    Juhani Pietilä
    Anu Vaajanen
    Hannu Uusitalo
    Clinical Proteomics, 2019, 16
  • [43] Human myelin proteome and comparative analysis with mouse myelin
    Ishii, Akihiro
    Dutta, Ranjan
    Wark, Greg M.
    Hwang, Sun-Il
    Han, David K.
    Trapp, Bruce D.
    Pfeiffer, Steven E.
    Bansal, Rashmi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) : 14605 - 14610
  • [44] Comprehensive characterization of the human pancreatic proteome for bioengineering applications
    Asthana, Amish
    Tamburrini, Riccardo
    Chaimov, Deborah
    Gazia, Carlo
    Walker, Stephen J.
    Van Dyke, Mark
    Tomei, Alice
    Lablanche, Sandrine
    Robertson, John
    Opara, Emmanuel C.
    Soker, Shay
    Orlando, Giuseppe
    BIOMATERIALS, 2021, 270
  • [45] Age-associated changes in human tear proteome
    Nattinen, Janika
    Jylha, Antti
    Aapola, Ulla
    Makinen, Petri
    Beuerman, Roger
    Pietila, Juhani
    Vaajanen, Anu
    Uusitalo, Hannu
    CLINICAL PROTEOMICS, 2019, 16 (1)
  • [47] The Proteome of Normal Human Chorionic Villus Sampling Cells
    Xanthopoulou, Alexandra G.
    Anagnostopoulos, Athanassios K.
    Thanasopoulou, Aggeliki
    Anastasiadou, Ema
    Sifakis, Stavros
    Siafaka-Kapadai, Athanassia
    Tsangaris, George Th
    IN VIVO, 2011, 25 (06): : 945 - 961
  • [48] Spanish Human Proteome Project: Dissection of Chromosome 16
    Segura, V.
    Medina-Aunon, J. A.
    Guruceaga, E.
    Gharbi, S. I.
    Gonzalez-Tejedo, C.
    Sanchez del Pino, M. M.
    Canals, F.
    Fuentes, M.
    Ignacio Casal, J.
    Martinez-Bartolome, S.
    Elortza, F.
    Mato, J. M.
    Arizmendi, J. M.
    Abian, J.
    Oliveira, E.
    Gil, C.
    Vivanco, F.
    Blanco, F.
    Albar, J. P.
    Corrales, F. J.
    JOURNAL OF PROTEOME RESEARCH, 2013, 12 (01) : 112 - 122
  • [49] The human saliva proteome: overview and emerging methods for characterization
    Griffin, Timothy J.
    ADVANCES IN GLOBAL HEALTH THROUGH SENSING TECHNOLOGIES 2015, 2015, 9490
  • [50] The 2023 Report on the Proteome from the HUPO Human Proteome Project
    Omenn, Gilbert S.
    Lane, Lydie
    Overall, Christopher M.
    Lindskog, Cecilia
    Pineau, Charles
    Packer, Nicolle H.
    Cristea, Ileana M.
    Weintraub, Susan T.
    Orchard, Sandra
    Roehrl, Michael H. A.
    Nice, Edouard
    Guo, Tiannan
    Van Eyk, Jennifer E.
    Liu, Siqi
    Bandeira, Nuno
    Aebersold, Ruedi
    Moritz, Robert L.
    Deutsch, Eric W.
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (02) : 532 - 549