A joint latent factor analyzer and functional subspace model for clustering multivariate functional data

被引:0
|
作者
Sharp, Alex [1 ]
Browne, Ryan [1 ]
机构
[1] Univ Waterloo, 200 Univ Ave W, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Functional data; Model-based clustering; Matrix normal distribution; Functional principal components analysis; MAXIMUM-LIKELIHOOD; EM ALGORITHM; PRINCIPAL; DENSITY;
D O I
10.1007/s11222-022-10128-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a model-based approach for clustering multivariate functional data observations. We utilize theoretical results regarding a surrogate density on the truncated Karhunen-Loeve expansions along with a direct sum specification of the functional space to define a matrix normal distribution on functional principal components. This formulation allows for individual parsimonious modelling of the function space and coefficient space of the univariate components of the multivariate functional observations in the form a subspace projection and latent factor analyzers, respectively. The approach facilitates interpretation at both the full multivariate level and the component level, which is of specific interest when the component functions have clear meaning. We derive an AECM algorithm for fitting the model, and discuss appropriate initialization strategies, convergence and model selection criteria. We demonstrate the model's applicability through simulation and two data analyses on observations that have many functional components.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] CLUSTERING FUNCTIONAL DATA USING WAVELETS
    Antoniadis, Anestis
    Brossat, Xavier
    Cugliari, Jairo
    Poggi, Jean-Michel
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (01)
  • [42] Joint multivariate and functional modeling for plant traits and reflectances
    White, Philip A.
    Christensen, Michael F.
    Frye, Henry
    Gelfand, Alan E.
    Silander, John A.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2023, 30 (03) : 501 - 528
  • [43] Multi-feature clustering of step data using multivariate functional principal component analysis
    Song, Wookyeong
    Oh, Hee-Seok
    Cheung, Ying Kuen
    Lim, Yaeji
    STATISTICAL PAPERS, 2024, 65 (04) : 2109 - 2134
  • [44] Mixtures of general location model with factor analyzer covariance structure for clustering mixed type data
    Amiri, Leila
    Khazaei, Mojtaba
    Ganjali, Mojtaba
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (11) : 2075 - 2100
  • [45] Multivariate data clustering for the Gaussian mixture model
    Kavaliauskas, M
    Rudzkis, R
    INFORMATICA, 2005, 16 (01) : 61 - 74
  • [46] A joint marginal-conditional model for multivariate longitudinal data
    Proudfoot, James
    Faig, Walter
    Natarajan, Loki
    Xu, Ronghui
    STATISTICS IN MEDICINE, 2018, 37 (05) : 813 - 828
  • [47] Conformal prediction bands for multivariate functional data
    Diquigiovanni, Jacopo
    Fontana, Matteo
    Vantini, Simone
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [48] Multivariate Functional Data Visualization and Outlier Detection
    Dai, Wenlin
    Genton, Marc G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 923 - 934
  • [49] Hidden Markov Models for multivariate functional data
    Martino, Andrea
    Guatteri, Giuseppina
    Paganoni, Anna Maria
    STATISTICS & PROBABILITY LETTERS, 2020, 167
  • [50] Dissimilarity for functional data clustering based on smoothing parameter commutation
    Tzeng, ShengLi
    Hennig, Christian
    Li, Yu-Fen
    Lin, Chien-Ju
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (11) : 3492 - 3504