A joint latent factor analyzer and functional subspace model for clustering multivariate functional data

被引:0
|
作者
Sharp, Alex [1 ]
Browne, Ryan [1 ]
机构
[1] Univ Waterloo, 200 Univ Ave W, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Functional data; Model-based clustering; Matrix normal distribution; Functional principal components analysis; MAXIMUM-LIKELIHOOD; EM ALGORITHM; PRINCIPAL; DENSITY;
D O I
10.1007/s11222-022-10128-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a model-based approach for clustering multivariate functional data observations. We utilize theoretical results regarding a surrogate density on the truncated Karhunen-Loeve expansions along with a direct sum specification of the functional space to define a matrix normal distribution on functional principal components. This formulation allows for individual parsimonious modelling of the function space and coefficient space of the univariate components of the multivariate functional observations in the form a subspace projection and latent factor analyzers, respectively. The approach facilitates interpretation at both the full multivariate level and the component level, which is of specific interest when the component functions have clear meaning. We derive an AECM algorithm for fitting the model, and discuss appropriate initialization strategies, convergence and model selection criteria. We demonstrate the model's applicability through simulation and two data analyses on observations that have many functional components.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Clustering Functional Data
    Thaddeus Tarpey
    Kimberly K. J. Kinateder
    Journal of Classification, 2003, 20 : 093 - 114
  • [22] Estimation of a clustering model for non Gaussian functional data
    Xu, Tengteng
    Zhang, Xiuzhen
    Zhang, Riquan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (18) : 6462 - 6476
  • [23] Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach
    Jiang, Jiakun
    Lin, Huazhen
    Zhong, Qingzhi
    Li, Yi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [24] Pseudo-quantile functional data clustering
    Kim, Joonpyo
    Oh, Hee-Seok
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 178
  • [25] Functional data clustering via information maximization
    Li, Xinyu
    Xu, Jianjun
    Cheng, Haoyang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (16) : 2982 - 3007
  • [26] Co-clustering for binary and functional data
    Ben Slimen, Yosra
    Jacques, Julien
    Allio, Sylvain
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 4845 - 4866
  • [27] Sparse clustering of functional data
    Floriello, Davide
    Vitelli, Valeria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 1 - 18
  • [28] Functional data clustering: a survey
    Julien Jacques
    Cristian Preda
    Advances in Data Analysis and Classification, 2014, 8 : 231 - 255
  • [29] Multiscale Clustering for Functional Data
    Lim, Yaeji
    Oh, Hee-Seok
    Cheung, Ying Kuen
    JOURNAL OF CLASSIFICATION, 2019, 36 (02) : 368 - 391
  • [30] Multiscale Clustering for Functional Data
    Yaeji Lim
    Hee-Seok Oh
    Ying Kuen Cheung
    Journal of Classification, 2019, 36 : 368 - 391