Entropy generation analysis of cylindrical heat pipe using nanofluid

被引:41
作者
Ghanbarpour, Morteza [1 ]
Khodabandeh, Rahmatollah [1 ]
机构
[1] Royal Inst Technol, Dept Energy Technol, SE-10044 Stockholm, Sweden
关键词
Heat pipe; Nanofluid; Thermodynamics; Entropy generation; Thermal resistance; RHEOLOGICAL BEHAVIOR; THERMAL-CONDUCTIVITY; PERFORMANCE; FLOW; NANOPARTICLES; EVAPORATION;
D O I
10.1016/j.tca.2015.04.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal performance of cylindrical heat pipe with nanofluid is studied based on the laws of thermodynamics. The objective of the present work is to investigate nanofluids effect on different sources of entropy generation in heat pipe caused by heat transfer between hot and cold reservoirs and also frictional losses and pressure drop in the liquid and vapor flow along heat pipe. An analytical study was performed to formulate all sources of entropy generation and the predicted results are compared with experimental ones. Cylindrical miniature grooved heat pipes of 250 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based TiO2 and Al2O3 nanofluids at different concentrations as working fluids. Analytical and experimental results revealed that the entropy generation in heat pipes decreases when nanofluids are used as working fluids instead of basefluid which results in improved thermal performance of the heat pipes with nanofluids. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 35 条
[1]   Entropy generation in couple stress fluid flow through porous channel with fluid slippage [J].
Adesanya, Samuel O. ;
Makinde, Oluwole D. .
INTERNATIONAL JOURNAL OF EXERGY, 2014, 15 (03) :344-362
[2]   Heat transfer performance of screen mesh wick heat pipes using silver-water nanofluid [J].
Asirvatham, Lazarus Godson ;
Nimmagadda, Rajesh ;
Wongwises, Somchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 60 :201-209
[3]  
Bejan A., 2008, DESIGN CONSTRUCTAL T
[4]  
Bejan A, 1982, Entropy Generation Through Heat and Fluid Flow, DOI DOI 10.1115/1.3167072
[5]   Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches [J].
Buschmann, Matthias H. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 72 :1-17
[6]   Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid [J].
Chandrasekar, M. ;
Suresh, S. ;
Bose, A. Chandra .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (02) :210-216
[7]   Rheological behaviour of nanofluids [J].
Chen, Haisheng ;
Ding, Yulong ;
Tan, Chunqing .
NEW JOURNAL OF PHYSICS, 2007, 9
[8]   Rheological behaviour of ethylene glycol based titania nanofluids [J].
Chen, Haisheng ;
Ding, Yulong ;
He, Yurong ;
Tan, Chunqing .
CHEMICAL PHYSICS LETTERS, 2007, 444 (4-6) :333-337
[9]   Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids [J].
Do, Kyu Hyung ;
Ha, Hyo Jun ;
Jang, Seok Pil .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (25-26) :5888-5894
[10]   Second law analysis for MHD permeable channel flow with variable electrical conductivity and asymmetric Navier slips [J].
Eegunjobi, Adetayo S. ;
Makinde, Oluwole D. .
OPEN PHYSICS, 2015, 13 (01) :100-110