Existence of periodic oscillatory solution of reaction-diffusion neural networks with delays

被引:44
|
作者
Zhao, HY [1 ]
Wang, GL
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Continious Educ, Nanjing 210016, Peoples R China
关键词
periodic oscillatory solutions; cellular neural networks; reaction-diffusion; Lyapunov functional;
D O I
10.1016/j.physleta.2005.05.098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we study a class of reaction-diffusion cellular neural networks with delays by introducing ingeniously real parameters xi(*)(j), eta(*)(j), alpha(*)(j), beta(*)(j), eta(j), beta(j) with xi(*)(j) + alpha(*)(j) = 1, eta(*)(j) + beta(*)(j) = 1, xi(j) + alpha(j) = 1, eta(j) + beta(j) = 1 (j = 1,...,n), employing suitable Lyapunov functionals and applying some inequality techniques, we obtain a set of sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic oscillatory solution. These conditions have important leading significance in the design and applications of periodic oscillatory reaction-diffusion neural circuits. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:372 / 383
页数:12
相关论文
共 50 条