Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation

被引:8
|
作者
Oda, Masahiro [1 ,2 ]
Itoh, Hayato [2 ]
Tanaka, Kiyohito [3 ]
Takabatake, Hirotsugu [4 ]
Mori, Masaki [5 ]
Natori, Hiroshi [6 ]
Mori, Kensaku [1 ,2 ,7 ]
机构
[1] Nagoya Univ, Informat & Commun, Nagoya, Aichi, Japan
[2] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[3] Kyoto Second Red Cross Hosp, Dept Gastroenterol, Kyoto, Japan
[4] Sapporo Minami Sanjo Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[5] Sapporo Kosei Gen Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[6] Keiwakai Nishioka Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[7] Natl Inst Informat, Res Ctr Med Bigdata, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
Depth estimation; single-shot monocular endoscopic image; lambertian surface translation; RECONSTRUCTION; REFLECTION; NAVIGATION;
D O I
10.1080/21681163.2021.2012835
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a depth estimation method from a single-shot monocular endoscopic image using Lambertian surface translation by domain adaptation and depth estimation using multi-scale edge loss. We employ a two-step estimation process including Lambertian surface translation from unpaired data and depth estimation. The texture and specular reflection on the surface of an organ reduce the accuracy of depth estimations. We apply Lambertian surface translation to an endoscopic image to remove these texture and reflections. Then, we estimate the depth by using a fully convolutional network (FCN). During the training of the FCN, improvement of the object edge similarity between an estimated image and a ground truth depth image is important for getting better results. We introduced a muti-scale edge loss function to improve the accuracy of depth estimation. We quantitatively evaluated the proposed method using real colonoscopic images. The estimated depth values were proportional to the real depth values. Furthermore, we applied the estimated depth images to automated anatomical location identification of colonoscopic images using a convolutional neural network. The identification accuracy of the network improved from 69.2% to 74.1% by using the estimated depth images.
引用
收藏
页码:266 / 273
页数:8
相关论文
共 50 条
  • [1] Depth Estimation from a Monocular Outdoor Image
    Kuo, Tien-Ying
    Lo, Yi-Chung
    Lai, Yun-Yang
    IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE 2011), 2011, : 161 - 162
  • [2] Monocular Depth Estimation Based on a Single Image - A Literature Review
    Tian Yuan
    Hu Xiaodong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [3] SINGLE IMAGE DEPTH ESTIMATION FROM IMAGE DESCRIPTORS
    Lin, Yu-Hsun
    Cheng, Wen-Huang
    Miao, Hsin
    Ku, Tsung-Hao
    Hsieh, Yung-Huan
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 809 - 812
  • [4] EFFICIENT DEPTH ESTIMATION FROM SINGLE IMAGE
    Zhou, Wei
    Dai, Yuchao
    He, Renjie
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 296 - 300
  • [5] DEPTH ESTIMATION FROM SINGLE IMAGE AND SEMANTIC PRIOR
    Hambarde, Praful
    Dudhane, Akshay
    Patil, Prashant W.
    Murala, Subrahmanyam
    Dhall, Abhinav
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1441 - 1445
  • [6] Depth Estimation from a Single Image Using Line Segments only
    Nava Zavala, Jose G.
    Martinez-Carranza, Jose
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 331 - 341
  • [7] Contextualized CNN for Scene-Aware Depth Estimation From Single RGB Image
    Song, Wenfeng
    Li, Shuai
    Liu, Ji
    Hao, Aimin
    Zhao, Qinping
    Qin, Hong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (05) : 1220 - 1233
  • [8] Edge-Aware Spatial Propagation Network for Multi-view Depth Estimation
    Xu, Siyuan
    Xu, Qingshan
    Su, Wanjuan
    Tao, Wenbing
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10905 - 10923
  • [9] Joint self-supervised learning and adversarial adaptation for monocular depth estimation from thermal image
    Shin, Ukcheol
    Park, Kwanyong
    Lee, Kyunghyun
    Lee, Byeong-Uk
    Kweon, In So
    MACHINE VISION AND APPLICATIONS, 2023, 34 (04)
  • [10] Joint self-supervised learning and adversarial adaptation for monocular depth estimation from thermal image
    Ukcheol Shin
    Kwanyong Park
    Kyunghyun Lee
    Byeong-Uk Lee
    In So Kweon
    Machine Vision and Applications, 2023, 34