Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation

被引:9
作者
Oda, Masahiro [1 ,2 ]
Itoh, Hayato [2 ]
Tanaka, Kiyohito [3 ]
Takabatake, Hirotsugu [4 ]
Mori, Masaki [5 ]
Natori, Hiroshi [6 ]
Mori, Kensaku [1 ,2 ,7 ]
机构
[1] Nagoya Univ, Informat & Commun, Nagoya, Aichi, Japan
[2] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[3] Kyoto Second Red Cross Hosp, Dept Gastroenterol, Kyoto, Japan
[4] Sapporo Minami Sanjo Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[5] Sapporo Kosei Gen Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[6] Keiwakai Nishioka Hosp, Dept Resp Med, Sapporo, Hokkaido, Japan
[7] Natl Inst Informat, Res Ctr Med Bigdata, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
Depth estimation; single-shot monocular endoscopic image; lambertian surface translation; RECONSTRUCTION; REFLECTION; NAVIGATION;
D O I
10.1080/21681163.2021.2012835
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a depth estimation method from a single-shot monocular endoscopic image using Lambertian surface translation by domain adaptation and depth estimation using multi-scale edge loss. We employ a two-step estimation process including Lambertian surface translation from unpaired data and depth estimation. The texture and specular reflection on the surface of an organ reduce the accuracy of depth estimations. We apply Lambertian surface translation to an endoscopic image to remove these texture and reflections. Then, we estimate the depth by using a fully convolutional network (FCN). During the training of the FCN, improvement of the object edge similarity between an estimated image and a ground truth depth image is important for getting better results. We introduced a muti-scale edge loss function to improve the accuracy of depth estimation. We quantitatively evaluated the proposed method using real colonoscopic images. The estimated depth values were proportional to the real depth values. Furthermore, we applied the estimated depth images to automated anatomical location identification of colonoscopic images using a convolutional neural network. The identification accuracy of the network improved from 69.2% to 74.1% by using the estimated depth images.
引用
收藏
页码:266 / 273
页数:8
相关论文
共 34 条
[1]  
Aksamentov Ivan, 2017, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017. 20th International Conference. Proceedings: LNCS 10434, P586, DOI 10.1007/978-3-319-66185-8_66
[2]  
Alhashim I., 2019, ARXIV181211941V2
[3]  
BRANDAO P, 2017, SPIE MED IMAG, V134
[4]   StereoDRNet: Dilated Residual StereoNet [J].
Chabra, Rohan ;
Straub, Julian ;
Sweeney, Chris ;
Newcombe, Richard ;
Fuchs, Henry .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11778-11787
[5]   Unsupervised Monocular Depth Estimation with Left-Right Consistency [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Brostow, Gabriel J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6602-6611
[6]   Group-wise Correlation Stereo Network [J].
Guo, Xiaoyang ;
Yang, Kai ;
Yang, Wukui ;
Wang, Xiaogang ;
Li, Hongsheng .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3268-3277
[7]   Clinical application of a surgical navigation system based on virtual laparoscopy in laparoscopic gastrectomy for gastric cancer [J].
Hayashi, Yuichiro ;
Misawa, Kazunari ;
Oda, Masahiro ;
Hawkes, David J. ;
Mori, Kensaku .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (05) :827-836
[8]   HEIGHT AND GRADIENT FROM SHADING [J].
HORN, BKP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1990, 5 (01) :37-75
[9]  
HUANG G, 2017, PROC CVPR IEEE, P2261, DOI DOI 10.1109/CVPR.2017.243
[10]   Deeper Depth Prediction with Fully Convolutional Residual Networks [J].
Laina, Iro ;
Rupprecht, Christian ;
Belagiannis, Vasileios ;
Tombari, Federico ;
Navab, Nassir .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :239-248