Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization

被引:23
作者
Birgin, E. G. [1 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, IME USP, Dept Comp Sci, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, IMECC UNICAMP, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; augmented Lagrangian methods; box constraints; quasi-Newton; truncated-Newton;
D O I
10.1007/s10589-007-9050-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 47 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   Augmented Lagrangian methods under the constant positive linear dependence constraint qualification [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :5-32
[3]   On the relation between constant positive linear dependence condition and quasinormality constraint qualification [J].
Andreani, R ;
Martinez, JM ;
Schuverdt, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) :473-485
[4]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[5]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[6]   Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems [J].
Birgin, EG ;
Castillo, RA ;
Martínez, JM .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (01) :31-55
[7]   Inexact spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :539-559
[8]   Algorithm 813:: SPG -: Software for convex-constrained optimization [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (03) :340-349
[9]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[10]   A limited-memory multipoint symmetric secant method for bound constrained optimization [J].
Burdakov, OP ;
Martínez, JM ;
Pilotta, EA .
ANNALS OF OPERATIONS RESEARCH, 2002, 117 (1-4) :51-70