Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model

被引:87
|
作者
Tao, Yihao [1 ]
Li, Lin [2 ]
Jiang, Bing [1 ]
Feng, Zhou [1 ]
Yang, Liming [1 ]
Tang, Jun [1 ]
Chen, Qianwei [1 ]
Zhang, Jianbo [1 ]
Tan, Qiang [1 ]
Feng, Hua [1 ]
Chen, Zhi [1 ]
Zhu, Gang [1 ]
机构
[1] Third Mil Med Univ, Southwest Hosp, Dept Neurosurg, 30 Gaotanyan St, Chongqing 400038, Peoples R China
[2] Nanchong Cent Hosp, Dept Neurosurg, Nanchong 637000, Peoples R China
基金
美国国家科学基金会;
关键词
Cannabinoid receptor-2; Microglial polarization; PKA; Anti-inflammation; GERMINAL-MATRIX-HEMORRHAGE; SPINAL-CORD-INJURY; BRAIN-INJURY; CYCLIC-AMP; PROTEIN-KINASE; CB2; RECEPTOR; IN-VITRO; INTRAVENTRICULAR HEMORRHAGE; INTRACEREBRAL HEMORRHAGE; ACTIVATION;
D O I
10.1016/j.bbi.2016.05.020
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Excessive inflammatory responses are involved in secondary brain injury during germinal matrix hemorrhage (GMH). The process of microglial polarization to the pro-inflammatory M1 or anti-inflammatory M2 phenotypes is considered to occur in a major immunomodulatory manner during brain inflammation. We previously found that cannabinoid receptor-2 (CB2R) stimulation attenuated microglial accumulation and brain injury following experimental GMH. However, whether CB2R has effects on microglial polarization after GMH remains unclear. Herein, we investigated the effects of CB2R stimulation on neuroinflammation after experimental GMH and the potential mechanisms that mediate M1/M2 microglial phenotype regulation. The results indicated that during the GMH acute phase, microglia primarily polarized to the M1 phenotype and induced an overwhelming release of pro-inflammatory cytokines. However, JWH133, a selective CB2R agonist, significantly prevented the pro-inflammatory cytokine release while promoting an M1 to M2 phenotype transformation in microglia, resulting in an increased anti-inflammatory cytokine release. Moreover, in thrombin-induced rat primary microglial cells, JWH133 reduced the pro-inflammatory cytokine levels and M1 phenotype by enhancing the acquisition of the M2 phenotype. Additionally, JWH133 facilitated synthesis of cyclic AMP (cAMP) and its downstream effectors, phosphorylated cAMP-dependent protein kinase (p-PKA) and exchange protein activated by cyclic-AMP 1 (Epacl). The promoting effects of JWH133 on M2 polarization were attenuated with a specific PKA inhibitor but not with an Epac inhibitor, indicating that the cAMP/PKA signaling pathway was involved in the JWH133 effects. This is the first study to propose that promotion of microglial M2 polarization through the cAMP/PKA pathway participates in the CB2R-mediated anti-inflammatory effects after GMH induction. The results will help to further understand the mechanisms that underlie neuroprotection by CB2R in GMH and promote clinical translational research for CB2R agonists. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 129
页数:12
相关论文
共 50 条
  • [1] Dexmedetomidine Inhibits Neuroinflammation by Altering Microglial M1/M2 Polarization Through MAPK/ERK Pathway
    Qiu, Zhengguo
    Lu, Pan
    Wang, Kui
    Zhao, Xijuan
    Li, Qianqian
    Wen, Jieqiong
    Zhang, Hong
    Li, Rong
    Wei, Haidong
    Lv, Yuying
    Zhang, Shuyue
    Zhang, Pengbo
    NEUROCHEMICAL RESEARCH, 2020, 45 (02) : 345 - 353
  • [2] Dexmedetomidine Inhibits Neuroinflammation by Altering Microglial M1/M2 Polarization Through MAPK/ERK Pathway
    Zhengguo Qiu
    Pan Lu
    Kui Wang
    Xijuan Zhao
    Qianqian Li
    Jieqiong Wen
    Hong Zhang
    Rong Li
    Haidong Wei
    Yuying Lv
    Shuyue Zhang
    Pengbo Zhang
    Neurochemical Research, 2020, 45 : 345 - 353
  • [3] Resveratrol alleviated neuroinflammation induced by pseudorabies virus infection through regulating microglial M1/M2 polarization
    Chen, Xiangxiu
    Xue, Junshu
    Zou, Junjie
    Zhao, Xinghong
    Li, Lixia
    Jia, Renyong
    Zou, Yuanfeng
    Wan, Hongping
    Chen, Yaqin
    Zhou, Xun
    Ye, Gang
    Yin, Lizi
    Liang, Xiaoxia
    He, Changliang
    Zhao, Ling
    Tang, Huaqiao
    Lv, Cheng
    Song, Xu
    Yin, Zhongqiong
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 160
  • [4] Cannabinoid Receptor-2 Alleviates Sepsis-Induced Neuroinflammation by Modulating Microglia M1/M2 Subset Polarization Through Inhibiting Nogo-B Expression
    Chen, Shuxian
    Li, Zhen
    Yang, Liu
    Xu, Zujin
    Liu, Anpeng
    He, Qianwen
    Xiao, Fei
    Zhan, Jia
    MOLECULAR NEUROBIOLOGY, 2025,
  • [5] Inhibition of AGEs/RAGE/Rho/ROCK.pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway
    Chen, Jingkao
    Sun, Zhaowei
    Jin, Minghua
    Tu, Yalin
    Wang, Shengnan
    Yang, Xiaohong
    Chen, Qiuhe
    Zhang, Xiao
    Han, Yifan
    Pi, Rongbiao
    JOURNAL OF NEUROIMMUNOLOGY, 2017, 305 : 108 - 114
  • [6] Psoralen protects neurons and alleviates neuroinflammation by regulating microglial M1/M2 polarization via inhibition of the Fyn-PKCδ pathway
    Guo, Yaping
    Xu, Sai
    Pan, Xiaohong
    Xin, Wenyu
    Cao, Wenli
    Ma, Wenya
    Li, Li
    Shen, Qi
    Li, Zhipeng
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 137
  • [7] Microglial M1/M2 polarization and metabolic states
    Orihuela, Ruben
    McPherson, Christopher A.
    Harry, Gaylia Jean
    BRITISH JOURNAL OF PHARMACOLOGY, 2016, 173 (04) : 649 - 665
  • [8] Microglial M1/M2 balance in a motor disease rat model
    Kawaguchi, Kimino
    Kusama-Eguchi, Kuniko
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2014, 124 : 150P - 150P
  • [9] Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway
    Wang, Wen-Ba
    Li, Jing-Tao
    Hui, Yi
    Shi, Jie
    Wang, Xu-Yan
    Yan, Shu-Guang
    CHINESE MEDICINE, 2022, 17 (01)
  • [10] Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway
    Wen-Ba Wang
    Jing-Tao Li
    Yi Hui
    Jie Shi
    Xu-Yan Wang
    Shu-Guang Yan
    Chinese Medicine, 17