Integrating Dense LiDAR-Camera Road Detection Maps by a Multi-Modal CRF Model

被引:23
作者
Gu, Shuo [1 ]
Zhang, Yigong [1 ]
Tang, Jinhui [1 ,2 ]
Yang, Jian [1 ,2 ]
Alvarez, Jose M. [3 ]
Kong, Hui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Jiangsu Key Lab Image & Video Understanding Socia, PCA Lab,Minist Educ,Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] NVIDIA, Santa Clara, CA 95051 USA
关键词
LiDAR-camera fusion; road detection; KITTI; ALGORITHMS;
D O I
10.1109/TVT.2019.2946100
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Road detection is an important task in autonomous navigation systems. In this paper, we propose a road detection method via a LiDAR-camera fusion strategy to exploit both the range and color information. The whole system consists of three parts. In the LiDAR based part, we transform the discrete 3D LiDAR point clouds to continuous 2D LiDAR range images and propose a distance-aware height-difference based scanning approach to get the road estimations quickly. In the camera based part, we apply a light-weight transfer learning based road segmentation network. In the LiDAR-camera fusion part, we transform the detection results from LiDAR and camera to dense and binary ones to solve the data imbalance problem and fuse them in a multi-modal conditional random field (MM-CRF) framework. Experiments show that the proposed MM-CRF fusion method can operate in real-time and achieve competitive performance compared with the state-of-the-art road detection algorithms on the KITTI-Road benchmark.
引用
收藏
页码:11635 / 11645
页数:11
相关论文
共 42 条
[31]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[32]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[33]  
Shinzato PY, 2014, IEEE INT VEH SYM, P687, DOI 10.1109/IVS.2014.6856454
[34]  
Siegemund J, 2011, IEEE INT VEH SYM, P637, DOI 10.1109/IVS.2011.5940447
[35]  
Song C, 2016, 2016 INTERNATIONAL CONFERENCE ON ENERGY DEVELOPMENT AND ENVIRONMENTAL PROTECTION (EDEP 2016), P360
[36]  
Teichmann M, 2018, IEEE INT VEH SYM, P1013, DOI 10.1109/IVS.2018.8500504
[37]   Sparsity Invariant CNNs [J].
Uhrig, Jonas ;
Schneider, Nick ;
Schneider, Lukas ;
Franke, Uwe ;
Brox, Thomas ;
Geiger, Andreas .
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, :11-20
[38]  
Wirges S, 2017, IEEE INT VEH SYM, P1140, DOI 10.1109/IVS.2017.7995866
[39]   Hybrid conditional random field based camera-LIDAR fusion for road detection [J].
Xiao, Liang ;
Wang, Ruili ;
Dai, Bin ;
Fang, Yuqiang ;
Liu, Daxue ;
Wu, Tao .
INFORMATION SCIENCES, 2018, 432 :543-558
[40]  
Xiao L, 2015, IEEE INT VEH SYM, P192, DOI 10.1109/IVS.2015.7225685