Integrating Dense LiDAR-Camera Road Detection Maps by a Multi-Modal CRF Model

被引:23
作者
Gu, Shuo [1 ]
Zhang, Yigong [1 ]
Tang, Jinhui [1 ,2 ]
Yang, Jian [1 ,2 ]
Alvarez, Jose M. [3 ]
Kong, Hui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Jiangsu Key Lab Image & Video Understanding Socia, PCA Lab,Minist Educ,Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] NVIDIA, Santa Clara, CA 95051 USA
关键词
LiDAR-camera fusion; road detection; KITTI; ALGORITHMS;
D O I
10.1109/TVT.2019.2946100
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Road detection is an important task in autonomous navigation systems. In this paper, we propose a road detection method via a LiDAR-camera fusion strategy to exploit both the range and color information. The whole system consists of three parts. In the LiDAR based part, we transform the discrete 3D LiDAR point clouds to continuous 2D LiDAR range images and propose a distance-aware height-difference based scanning approach to get the road estimations quickly. In the camera based part, we apply a light-weight transfer learning based road segmentation network. In the LiDAR-camera fusion part, we transform the detection results from LiDAR and camera to dense and binary ones to solve the data imbalance problem and fuse them in a multi-modal conditional random field (MM-CRF) framework. Experiments show that the proposed MM-CRF fusion method can operate in real-time and achieve competitive performance compared with the state-of-the-art road detection algorithms on the KITTI-Road benchmark.
引用
收藏
页码:11635 / 11645
页数:11
相关论文
共 42 条
[1]  
Berg A.C., 2015, ARXIV150604579
[2]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[3]   LIDAR-camera fusion for road detection using fully convolutional neural networks [J].
Caltagirone, Luca ;
Bellone, Mauro ;
Svensson, Lennart ;
Wande, Mattias .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 111 :125-131
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]  
Chen YF, 2017, IEEE INT C INT ROBOT, P1343, DOI 10.1109/IROS.2017.8202312
[7]   Progressive LiDAR Adaptation for Road Detection [J].
Chen, Zhe ;
Zhang, Jing ;
Tao, Dacheng .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) :693-702
[8]   RBNet: A Deep Neural Network for Unified Road and Road Boundary Detection [J].
Chen, Zhe ;
Chen, Zijing .
NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 :677-687
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]  
Eldesokey A., 2018, British Mach. Vision Conf. (BMVC)