Periodic solutions of nonlinear wave equations with general nonlinearities

被引:64
作者
Berti, M
Bolle, P
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Avignon, F-84000 Avignon, France
关键词
D O I
10.1007/s00220-003-0972-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a variational principle for small amplitude periodic solutions, with fixed frequency, of a completely resonant nonlinear wave equation. Existence and multiplicity results follow by min-max variational arguments.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 16 条
[1]   Homoclinics: Poincare-Melnikov type results via a variational approach [J].
Ambrosetti, A ;
Badiale, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :233-252
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Families of periodic solutions of resonant PDEs [J].
Bambusi, D ;
Paleari, S .
JOURNAL OF NONLINEAR SCIENCE, 2001, 11 (01) :69-87
[4]  
BAMBUSI D, FAMILIES PERIODIC SO
[5]  
BAMBUSI D, 2002, COMM PURE APPL ANAL, V1
[6]  
BAMBUSI D, 2000, ANN SC NORM SUP PI 4, V29
[7]  
BERTI M, IN PRESS NONLINEAR A
[8]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[9]   NEWTONS METHOD AND PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
CRAIG, W ;
WAYNE, CE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (11) :1409-1498
[10]  
CRAIG W, 1994, NATO ADV SCI INST SE, V320, P297