On the in-situ aqueous stability of an Mg-Li-(Al-Y-Zr) alloy: Role of Li

被引:37
作者
Yan, Y. M. [1 ,2 ]
Maltseva, A. [2 ]
Zhou, P. [2 ,3 ]
Li, X. J. [2 ]
Zeng, Z. R. [1 ]
Gharbi, O. [4 ]
Ogle, K. [2 ]
La Haye, M. [6 ]
Vaudescal, M. [6 ]
Esmaily, M. [1 ,7 ]
Birbilis, N. [5 ]
Volovitch, P. [2 ]
机构
[1] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[2] PSL Res Univ, Chim ParisTech, CNRS, IRCP, F-75005 Paris, France
[3] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Peoples R China
[4] Sorbonne Univ, CNRS, LISE, F-75005 Paris, France
[5] Australian Natl Univ, Coll Engn & Comp Sci, Canberra, ACT 2601, Australia
[6] PLACAMAT, 87 Ave Docteur Albert Schweitzer, F-33608 Pessac, France
[7] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
Magnesium; In-situ Raman spectroscopy; ICP-OES; AES (Auger spectroscopy); Interfaces; Neutral inhibition; ATOMIC-EMISSION SPECTROELECTROCHEMISTRY; ENHANCED CATALYTIC-ACTIVITY; MECHANICAL-PROPERTIES; ANODIC-DISSOLUTION; MAGNESIUM ALLOYS; DETECTION LIMITS; MG; CORROSION; LITHIUM; MICROSTRUCTURE;
D O I
10.1016/j.corsci.2019.108342
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aqueous stability of a corrosion resistant Mg-Li(-Al-Y-Zr)-alloy was investigated by combining in-situ confocal Raman Microscopy, Atomic Emission SpectroElectroChemistry, ex-situ Photoluminiscence Spectroscopy, Auger Electron Spectroscopy and Glow Discharge Optical Emission Spectroscopy. Li and Mg dissolved from visually intact anodic areas, leaving a Li-depleted metallic layer under approximately 100 nm thick Li-doped MgO. The transformation MgO -> Mg(OH)(2) was inhibited. Li-2[Al-2(OH)(6)](2)center dot CO3 center dot nH(2)O, LiAlO2, Y2O3 and Mg(OH)(2) accumulated locally around active cathodic sites. New corrosion mechanism is proposed, which associates the improved corrosion resistance of Mg-Li alloys with an enhanced chemical stability and modified catalytic activity of MgO in presence of Li+.
引用
收藏
页数:13
相关论文
共 87 条
[1]  
Al-Mowali A.H., 2013, AM J MAT SCI ENG, V1, P50
[2]  
ANPO M, 1989, STUD SURF SCI CATAL, V48, P1
[3]   Specific defect sites creation by doping MgO with lithium and titanium [J].
Balint, I ;
Aika, K .
APPLIED SURFACE SCIENCE, 2001, 173 (3-4) :296-306
[4]   Size Effects in MgO Cube Dissolution [J].
Baumann, Stefan O. ;
Schneider, Johannes ;
Sternig, Andreas ;
Thomele, Daniel ;
Stankic, Slavica ;
Berger, Thomas ;
Gronbeck, Henrik ;
Diwald, Oliver .
LANGMUIR, 2015, 31 (09) :2770-2776
[5]  
Bialobrzeski A., 2007, ARCH FOUNDRY ENG, V7, P7
[6]   Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J].
Birbilis, N. ;
King, A. D. ;
Thomas, S. ;
Frankel, G. S. ;
Scully, J. R. .
ELECTROCHIMICA ACTA, 2014, 132 :277-283
[7]   ANODIC DISSOLUTION-BASED MECHANISM FOR THE RAPID CRACKING, PREEXPOSURE PHENOMENON DEMONSTRATED BY ALUMINUM-LITHIUM-COPPER ALLOYS [J].
BUCHHEIT, RG ;
WALL, FD ;
STONER, GE ;
MORAN, JP .
CORROSION, 1995, 51 (06) :417-428
[8]   Cathodic Activity of Corrosion Filaments Formed on Mg Alloy AM30 [J].
Cano, Z. P. ;
McDermid, J. R. ;
Kish, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :C732-C740
[9]   RAMAN SPECTRA OF CRYSTALLINE AND MOLTEN MGCL2 [J].
CAPWELL, RJ .
CHEMICAL PHYSICS LETTERS, 1972, 12 (03) :443-&
[10]  
Chen C, 2018, ISSCC DIG TECH PAP I, P186, DOI 10.1109/ISSCC.2018.8310246