Machine learning analysis of extreme events in optical fibre modulation instability

被引:107
作者
Narhi, Mikko [1 ]
Salmela, Lauri [1 ]
Toivonen, Juha [1 ]
Billet, Cyril [2 ]
Dudley, John M. [2 ]
Genty, Goery [1 ]
机构
[1] Tampere Univ Technol, Lab Photon, FI-33101 Tampere, Finland
[2] Univ Bourgogne Franche Comte, CNRS UMR 6174, Inst FEMTO ST, F-25000 Besancon, France
基金
芬兰科学院;
关键词
SUPERCONTINUUM GENERATION; ROGUE WAVES; TIME; RECONSTRUCTION; BREATHERS; DYNAMICS; PHASE; NOISE; MODEL;
D O I
10.1038/s41467-018-07355-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central research area in nonlinear science is the study of instabilities that drive extreme events. Unfortunately, techniques for measuring such phenomena often provide only partial characterisation. For example, real-time studies of instabilities in nonlinear optics frequently use only spectral data, limiting knowledge of associated temporal properties. Here, we show how machine learning can overcome this restriction to study time-domain properties of optical fibre modulation instability based only on spectral intensity measurements. Specifically, a supervised neural network is trained to correlate the spectral and temporal properties of modulation instability using simulations, and then applied to analyse high dynamic range experimental spectra to yield the probability distribution for the highest temporal peaks in the instability field. We also use unsupervised learning to classify noisy modulation instability spectra into subsets associated with distinct temporal dynamic structures. These results open novel perspectives in all systems exhibiting instability where direct time-domain observations are difficult.
引用
收藏
页数:11
相关论文
共 44 条
[31]   Application of space-time duality to ultrahigh-speed optical signal processing [J].
Salem, Reza ;
Foster, Mark A. ;
Gaeta, Alexander L. .
ADVANCES IN OPTICS AND PHOTONICS, 2013, 5 (03) :274-317
[32]  
Samarasinghe S., 2006, Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition
[33]  
Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN, DOI [10.1017/CBO9781107298019, DOI 10.1017/CBO9781107298019]
[34]   Optical rogue waves [J].
Solli, D. R. ;
Ropers, C. ;
Koonath, P. ;
Jalali, B. .
NATURE, 2007, 450 (7172) :1054-U7
[35]  
Solli DR, 2012, NAT PHOTONICS, V6, P463, DOI [10.1038/NPHOTON.2012.126, 10.1038/nphoton.2012.126]
[36]   Single-shot observation of optical rogue waves in integrable turbulence using time microscopy [J].
Suret, Pierre ;
El Koussaifi, Rebecca ;
Tikan, Alexey ;
Evain, Clement ;
Randoux, Stephane ;
Szwaj, Christophe ;
Bielawski, Serge .
NATURE COMMUNICATIONS, 2016, 7
[37]   Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography [J].
Tikan, Alexey ;
Bielawski, Serge ;
Szwaj, Christophe ;
Randoux, Stephane ;
Suret, Pierre .
NATURE PHOTONICS, 2018, 12 (04) :228-+
[38]   Emergent rogue wave structures and statistics in spontaneous modulation instability [J].
Toenger, Shanti ;
Godin, Thomas ;
Billet, Cyril ;
Dias, Frederic ;
Erkintalo, Miro ;
Genty, Goery ;
Dudley, John M. .
SCIENTIFIC REPORTS, 2015, 5
[39]   Real-time full bandwidth measurement of spectral noise in supercontinuum generation [J].
Wetzel, B. ;
Stefani, A. ;
Larger, L. ;
Lacourt, P. A. ;
Merolla, J. M. ;
Sylvestre, T. ;
Kudlinski, A. ;
Mussot, A. ;
Genty, G. ;
Dias, F. ;
Dudley, J. M. .
SCIENTIFIC REPORTS, 2012, 2
[40]   Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm [J].
Woodward, R. I. ;
Kelleher, E. J. R. .
SCIENTIFIC REPORTS, 2016, 6