Machine learning analysis of extreme events in optical fibre modulation instability

被引:107
作者
Narhi, Mikko [1 ]
Salmela, Lauri [1 ]
Toivonen, Juha [1 ]
Billet, Cyril [2 ]
Dudley, John M. [2 ]
Genty, Goery [1 ]
机构
[1] Tampere Univ Technol, Lab Photon, FI-33101 Tampere, Finland
[2] Univ Bourgogne Franche Comte, CNRS UMR 6174, Inst FEMTO ST, F-25000 Besancon, France
基金
芬兰科学院;
关键词
SUPERCONTINUUM GENERATION; ROGUE WAVES; TIME; RECONSTRUCTION; BREATHERS; DYNAMICS; PHASE; NOISE; MODEL;
D O I
10.1038/s41467-018-07355-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central research area in nonlinear science is the study of instabilities that drive extreme events. Unfortunately, techniques for measuring such phenomena often provide only partial characterisation. For example, real-time studies of instabilities in nonlinear optics frequently use only spectral data, limiting knowledge of associated temporal properties. Here, we show how machine learning can overcome this restriction to study time-domain properties of optical fibre modulation instability based only on spectral intensity measurements. Specifically, a supervised neural network is trained to correlate the spectral and temporal properties of modulation instability using simulations, and then applied to analyse high dynamic range experimental spectra to yield the probability distribution for the highest temporal peaks in the instability field. We also use unsupervised learning to classify noisy modulation instability spectra into subsets associated with distinct temporal dynamic structures. These results open novel perspectives in all systems exhibiting instability where direct time-domain observations are difficult.
引用
收藏
页数:11
相关论文
共 44 条
[21]   Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules [J].
Krupa, Katarzyna ;
Nithyanandan, K. ;
Andral, Ugo ;
Tchofo-Dinda, Patrice ;
Grelu, Philippe .
PHYSICAL REVIEW LETTERS, 2017, 118 (24)
[22]   Design and field test of a galvanometer deflected streak camera [J].
Lai, CC ;
Goosman, DR ;
Wade, JT ;
Avara, R .
25TH INTERNATIONAL CONGRESS ON HIGH-SPEED PHOTOGRAPHY AND PHOTONICS, 2003, 4948 :330-335
[23]   ULTRAFAST OPTICS The complete optical oscilloscope [J].
Lei, Cheng ;
Goda, Keisuke .
NATURE PHOTONICS, 2018, 12 (04) :190-191
[24]   Deep-learning-based ghost imaging [J].
Lyu, Meng ;
Wang, Wei ;
Wang, Hao ;
Wang, Haichao ;
Li, Guowei ;
Chen, Ni ;
Situ, Guohai .
SCIENTIFIC REPORTS, 2017, 7
[25]  
Mahjoubfar A, 2017, NAT PHOTONICS, V11, P341, DOI [10.1038/nphoton.2017.76, 10.1038/NPHOTON.2017.76]
[26]   Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability [J].
Narhi, Mikko ;
Wetzel, Benjamin ;
Billet, Cyril ;
Toenger, Shanti ;
Sylvestre, Thibaut ;
Merolla, Jean-Marc ;
Morandotti, Roberto ;
Dias, Frederic ;
Genty, Goery ;
Dudley, John M. .
NATURE COMMUNICATIONS, 2016, 7
[27]   Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach [J].
Pathak, Jaideep ;
Hunt, Brian ;
Girvan, Michelle ;
Lu, Zhixin ;
Ott, Edward .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[28]   Phase recovery and holographic image reconstruction using deep learning in neural networks [J].
Rivenson, Yair ;
Zhang, Yibo ;
Gunaydin, Harun ;
Teng, Da ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7 :17141-17141
[29]   Observation of soliton explosions in a passively mode-locked fiber laser [J].
Runge, Antoine F. J. ;
Broderick, Neil G. R. ;
Erkintalo, Miro .
OPTICA, 2015, 2 (01) :36-39
[30]   Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser [J].
Ryczkowski, P. ;
Narhi, M. ;
Billet, C. ;
Merolla, J. -M. ;
Genty, G. ;
Dudley, J. M. .
NATURE PHOTONICS, 2018, 12 (04) :221-+