Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry

被引:14
作者
Balbinot, L
Smichowski, P
Farias, S
Arruda, MAZ
Vodopivez, C
Poppi, RJ
机构
[1] UNICAMP, Dept Quim Analit, Inst Quim, BR-13083971 Campinas, SP, Brazil
[2] Ctr Atom Constituyentes, Unidad Actividad Quim, Comis Nacl Energia Atom, RA-1650 San Martin, BA, Argentina
[3] Inst Antartico Argentino, RA-1248 Buenos Aires, DF, Argentina
关键词
Antarctic algae; Kohonen neural; chemometrics; ICPOES;
D O I
10.1016/j.sab.2005.03.005
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Optical emission spectrometers can generate results, which sometimes are not easy to interpret, mainly when the analyses involve classifications. To make simultaneous data interpretation possible, the Kohonen neural network is used to classify different Antarctic algae according to their taxonomic groups from the determination of 14 analytes. The Kohonen neural network architecture used was 5 x 5 neurons, thus reducing 14-dimension input data to two-dimensional space. The input data were 14 analytes (As, Co, Cu, Fe, Mn, Sr, Zn, Cd, Cr, Mo, Ni, Pb, Se, V) with their concentrations, determined by inductively coupled plasma optical emission spectrometry in I I different species of algae. Three taxonomic groups (Rhodophyta, Phaeophyta and Cholorophyta) can be differentiated and classified through only their Cu content. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2001, ENV CONTAMINATION AN, DOI DOI 10.1016/B978-008043199-4/50007-1
[2]  
[Anonymous], 1989, MULTIVARIATE CALIBRA
[3]  
da Silva JCGE, 2002, ANAL CHIM ACTA, V453, P105
[4]   Levels of essential and potentially toxic trace metals in Antarctic macro algae [J].
Farías, S ;
Arisnabarreta, SP ;
Vodopivez, C ;
Smichowski, P .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (12) :2133-2140
[5]   Application of artificial neural networks to the classification of soils from Sao Paulo state using near-infrared spectroscopy [J].
Fidêncio, PH ;
Ruisánchez, I ;
Poppi, RJ .
ANALYST, 2001, 126 (12) :2194-2200
[6]  
Haykin S., 2001, REDES NEURAIS PRINCI
[7]   Effect of conducting carbon black on the photostabilization of injection molded poly(propylene-co-ethylene) containing TiO2 [J].
Maia, DRJ ;
Balbinot, L ;
Poppi, RJ ;
De Paoli, MA .
POLYMER DEGRADATION AND STABILITY, 2003, 82 (01) :89-98
[8]  
Mauseth J., 1998, BOT INTRO PLANT BIOL, Vsecond
[9]   Modeling toxicity by using supervised Kohonen Neural Networks [J].
Mazzatorta, P ;
Vracko, M ;
Jezierska, A ;
Benfenati, E .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (02) :485-492
[10]   USING ARTIFICIAL NEURAL NETWORKS FOR SOLVING CHEMICAL PROBLEMS .2. KOHONEN SELF-ORGANIZING FEATURE MAPS AND HOPFIELD NETWORKS [J].
MELSSEN, WJ ;
SMITS, JRM ;
BUYDENS, LMC ;
KATEMAN, G .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 23 (02) :267-291