DISCRIMINATIVE MULTI-VIEW FEATURE SELECTION AND FUSION

被引:0
|
作者
Liu, Yanbin [1 ]
Liao, Binbing [1 ,2 ]
Han, Yahong [1 ,3 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[3] Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME) | 2015年
关键词
discriminative; multi-view; feature selection; feature fusion;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In computer vision tasks such as action recognition and image classification, combining multiple visual feature sets is proven to be an effective strategy. However, simply combing these features may cause high dimensionality and lead to noises. Feature selection and fusion are common choices for multiple feature representation. In this paper, we propose a multi-view feature selection and fusion method which chooses and fuses discriminative features from multiple feature sets. For discriminative feature selection, we learn the selection matrix W by the minimization of the trace ratio objective function with l(2,1) norm regularization. For multiple feature fusion, we incorporate local structures of each view in the Laplacian matrix. Since the Laplacian matrix is constructed in unsupervised manner and scaled category indicator matrix is solved iteratively, our work is fully unsupervised. Experimental results on four action recognition datasets and two large-scale image classification datasets demonstrate the effectiveness of multi-view feature selection and fusion.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Bipartite Graph-based Discriminative Feature Learning for Multi-View Clustering
    Yan, Weiqing
    Xu, Jindong
    Liu, Jinglei
    Yue, Guanghui
    Tang, Chang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3403 - 3411
  • [22] Global semantic space feature fusion for multi-view clustering
    Wang, Lei
    Zhu, Changming
    MULTIMEDIA SYSTEMS, 2025, 31 (03)
  • [23] Multi-objective genetic algorithm for multi-view feature selection
    Imani, Vandad
    Sevilla-Salcedo, Carlos
    Moradi, Elaheh
    Fortino, Vittorio
    Tohka, Jussi
    APPLIED SOFT COMPUTING, 2024, 167
  • [24] Feature relevance and redundancy coefficients for multi-view multi-label feature selection
    Han, Qingqi
    Hu, Liang
    Gao, Wanfu
    INFORMATION SCIENCES, 2024, 652
  • [25] Global semantic space feature fusion for multi-view clusteringGlobal semantic space feature fusion for multi-view clusteringL. Wang, C. Zhu
    Lei Wang
    Changming Zhu
    Multimedia Systems, 2025, 31 (3)
  • [26] Multi-view feature selection via sparse tensor regression
    Yuan, Haoliang
    Lo, Sio-Long
    Yin, Ming
    Liang, Yong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (05)
  • [27] Robust Re-Weighted Multi-View Feature Selection
    Xue, Yiming
    Wang, Nan
    Yan, Niu
    Zhong, Ping
    Niu, Shaozhang
    Song, Yuntao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 741 - 756
  • [28] Low Redundancy Learning for Unsupervised Multi-view Feature Selection
    Jia, Hong
    Huang, Jian
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 179 - 190
  • [29] Adaptive multi-view feature selection for human motion retrieval
    Wang, Zhao
    Feng, Yinfu
    Qi, Tian
    Yang, Xiaosong
    Zhang, Jian J.
    SIGNAL PROCESSING, 2016, 120 : 691 - 701
  • [30] Kappa Based Weighted Multi-View Clustering with Feature Selection
    Zhu, Changming
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON COMPUTING AND PATTERN RECOGNITION (ICCPR 2018), 2018, : 50 - 54