First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Preliminary maps and basic results

被引:4194
|
作者
Bennett, CL
Halpern, M
Hinshaw, G
Jarosik, N
Kogut, A
Limon, M
Meyer, SS
Page, L
Spergel, DN
Tucker, GS
Wollack, E
Wright, EL
Barnes, C
Greason, MR
Hill, RS
Komatsu, E
Nolta, MR
Odegard, N
Peiris, HV
Verde, L
Weiland, JL
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[3] Dept Phys, Princeton, NJ 08544 USA
[4] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[5] Univ Chicago, Dept EFI, Chicago, IL 60637 USA
[6] Univ Chicago, Dept CfCP, Chicago, IL 60637 USA
[7] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[8] Brown Univ, Dept Phys, Providence, RI 02912 USA
[9] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA
[10] Sci Syst & Applicat Inc, Lanham, MD 20706 USA
关键词
cosmicmicrowave background; cosmology : observations; dark matter; early universe; instrumentation : detectors; space vehicles : instruments;
D O I
10.1086/377253
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present full-sky microwave maps in five frequency bands (23-94 GHz) from the Wilkinson Microwave Anisotropy Probe (WMAP) first-year sky survey. Calibration errors are less than 0.5%, and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7degrees FWHM Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58<f(NL)<134 (95% confidence level [CL]). The 2 <= l <= 900 anisotropy power spectrum is cosmic-variance-limited for l<354, with a signal-to-noise ratio greater than 1 per mode to l=658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large-angle correlation from reionization. The optical depth of reionization is tau=0.17+/-0.04, which implies a reionization epoch of t(r)=180(-80)(+220) Myr (95% CL) after the big bang at a redshift of z(r)=20(-9)(+10) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large-scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(0)=13.7+/-0.2 Gyr. Decoupling was t(dec)=379(-7)(+8) kyr after the big bang at a redshift of z(dec)=1089+/-1. The thickness of the decoupling surface was Deltaz(dec)=195+/-2. The matter density of the universe is Omega(m)h(2)=0.135(-0.009)(+0.008), the baryon density is Omega(b)h(2)=0.0224+/-0.0009, and the total mass-energy of the universe is Omega(tot)=1.02+/-0.02. It appears that there may be progressively less fluctuation power on smaller scales, from WMAP to fine-scale CMB measurements to galaxies and finally to the Lyalpha forest. This may be accounted for with a running spectral index of scalar fluctuations, fitted as n(s)=0.93+/-0.03 at wavenumber k(0)=0.05 Mpc(-1) (l(eff)approximate to700), with a slope of dn(s)/d ln k=-0.031(-0.018)(+0.016) in the best-fit model. (For WMAP data alone, n(s)=0.99+/-0.04.) This flat universe model is composed of 4.4% baryons, 22% dark matter, and 73% dark energy. The dark energy equation of state is limited to w<-0.78 (95% CL). Inflation theory is supported with n(s)approximate to 1, Omega(tot)approximate to 1, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations implied by the temperature-polarization anticorrelations at decoupling. An admixture of isocurvature modes does not improve the fit. The tensor-to-scalar ratio is r(k(0)=0.002 Mpc(-1)) <0.90 (95% CL). The lack of CMB fluctuation power on the largest angular scales reported by COBE and confirmed by WMAP is intriguing. WMAP continues to operate, so results will improve.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [31] The N-point correlation functions of the first-year Wilkinson Microwave Anisotropy Probe sky maps
    Eriksen, HK
    Banday, AJ
    Gorski, KM
    Lilje, PB
    ASTROPHYSICAL JOURNAL, 2005, 622 (01) : 58 - 71
  • [32] Cosmic microwave background and foregrounds in Wilkinson Microwave Anisotropy Probe first-year data
    Patanchon, G
    Cardoso, JF
    Delabrouille, J
    Vielva, P
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 364 (04) : 1185 - 1194
  • [33] Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Foreground polarization
    Kogut, A.
    Dunkley, J.
    Bennett, C. L.
    Dore, O.
    Gold, B.
    Halpern, M.
    Hinshaw, G.
    Jarosik, N.
    Komatsu, E.
    Nolta, M. R.
    Odegard, N.
    Page, L.
    Spergel, D. N.
    Tucker, G. S.
    Weiland, J. L.
    Wollack, E.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL, 2007, 665 (01) : 355 - 362
  • [34] SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: GALACTIC FOREGROUND EMISSION
    Gold, B.
    Odegard, N.
    Weiland, J. L.
    Hill, R. S.
    Kogut, A.
    Bennett, C. L.
    Hinshaw, G.
    Chen, X.
    Dunkley, J.
    Halpern, M.
    Jarosik, N.
    Komatsu, E.
    Larson, D.
    Limon, M.
    Meyer, S. S.
    Nolta, M. R.
    Page, L.
    Smith, K. M.
    Spergel, D. N.
    Tucker, G. S.
    Wollack, E.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 192 (02)
  • [35] Bayesian power spectrum analysis of the first-year Wilkinson Microwave Anisotropy Probe data
    O'Dwyer, IJ
    Eriksen, HK
    Wandelt, BD
    Jewell, JB
    Larson, DL
    Górski, KM
    Banday, AJ
    Levin, S
    Lilje, PB
    ASTROPHYSICAL JOURNAL, 2004, 617 (02) : L99 - L102
  • [36] Correlations from Galactic foregrounds in the first-year Wilkinson Microwave Anisotropy Probe data
    Naselsky, Pavel D.
    Novikov, Igor D.
    Chiang, Lung-Yih
    ASTROPHYSICAL JOURNAL, 2006, 642 (02) : 617 - 624
  • [37] FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA
    Nolta, M. R.
    Dunkley, J.
    Hill, R. S.
    Hinshaw, G.
    Komatsu, E.
    Larson, D.
    Page, L.
    Spergel, D. N.
    Bennett, C. L.
    Gold, B.
    Jarosik, N.
    Odegard, N.
    Weiland, J. L.
    Wollack, E.
    Halpern, M.
    Kogut, A.
    Limon, M.
    Meyer, S. S.
    Tucker, G. S.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 180 (02) : 296 - 305
  • [38] FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: BEAM MAPS AND WINDOW FUNCTIONS
    Hill, R. S.
    Weiland, J. L.
    Odegard, N.
    Wollack, E.
    Hinshaw, G.
    Larson, D.
    Bennett, C. L.
    Halpern, M.
    Page, L.
    Dunkley, J.
    Gold, B.
    Jarosik, N.
    Kogut, A.
    Limon, M.
    Nolta, M. R.
    Spergel, D. N.
    Tucker, G. S.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 180 (02) : 246 - 264
  • [39] SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES
    Weiland, J. L.
    Odegard, N.
    Hill, R. S.
    Wollack, E.
    Hinshaw, G.
    Greason, M. R.
    Jarosik, N.
    Page, L.
    Bennett, C. L.
    Dunkley, J.
    Gold, B.
    Halpern, M.
    Kogut, A.
    Komatsu, E.
    Larson, D.
    Limon, M.
    Meyer, S. S.
    Nolta, M. R.
    Smith, K. M.
    Spergel, D. N.
    Tucker, G. S.
    Wright, E. L.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 192 (02)
  • [40] The angular power spectrum of the first-year Wilkinson Microwave Anisotropy Probe data reanalyzed
    Fosalba, P
    Szapudi, I
    ASTROPHYSICAL JOURNAL, 2004, 617 (02) : L95 - L98