Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems

被引:32
作者
Doerfler, Willy [1 ]
Findeisen, Stefan [1 ]
Wieners, Christian [1 ]
机构
[1] KIT, Inst Angew & Numer Math, D-76049 Karlsruhe, Germany
关键词
Space-Time Methods; Discontinuous Galerkin Finite Elements; Linear Hyperbolic Systems; Transport Equation; Wave Equation; Maxwell's Equations; PARALLEL; INTEGRATION; PARAREAL;
D O I
10.1515/cmam-2016-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov-Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the efficiency of the overall adaptive solution process.
引用
收藏
页码:409 / 428
页数:20
相关论文
共 32 条
  • [21] Efficient time integration for discontinuous Galerkin approximations of linear wave equations
    Hochbruck, Marlis
    Pazur, Tomislav
    Schulz, Andreas
    Thawinan, Ekkachai
    Wieners, Christian
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (03): : 237 - 259
  • [22] Variational Space-Time Methods for the Wave Equation
    Koecher, Uwe
    Bause, Markus
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (02) : 424 - 453
  • [23] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635
  • [24] A "parareal" in time discretization of PDE's
    Lions, JL
    Maday, Y
    Turinici, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07): : 661 - 668
  • [25] A parallel block LU decomposition method for distributed finite element matrices
    Maurer, Daniel
    Wieners, Christian
    [J]. PARALLEL COMPUTING, 2011, 37 (12) : 742 - 758
  • [26] High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3695 - 3718
  • [27] A posteriori error estimation for acoustic wave propagation problems
    Oden, JT
    Prudhomme, S
    Demkowicz, L
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2005, 12 (04) : 343 - 389
  • [28] hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis
    van der Vegt, J. J. W.
    Rhebergen, S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (22) : 7537 - 7563
  • [29] A hybrid discontinuous in space and time Galerkin method for wave propagation problems
    Wang, Dalei
    Tezaur, Radek
    Farhat, Charbel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (04) : 263 - 289
  • [30] ROBUST OPERATOR ESTIMATES AND THE APPLICATION TO SUBSTRUCTURING METHODS FOR FIRST-ORDER SYSTEMS
    Wieners, Christian
    Wohlmuth, Barbara
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (05): : 1473 - 1494