Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems

被引:32
作者
Doerfler, Willy [1 ]
Findeisen, Stefan [1 ]
Wieners, Christian [1 ]
机构
[1] KIT, Inst Angew & Numer Math, D-76049 Karlsruhe, Germany
关键词
Space-Time Methods; Discontinuous Galerkin Finite Elements; Linear Hyperbolic Systems; Transport Equation; Wave Equation; Maxwell's Equations; PARALLEL; INTEGRATION; PARAREAL;
D O I
10.1515/cmam-2016-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov-Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the efficiency of the overall adaptive solution process.
引用
收藏
页码:409 / 428
页数:20
相关论文
共 32 条
  • [1] [Anonymous], 2007, FINITE ELEMENTE
  • [2] [Anonymous], IMA VOL MATH APPL
  • [3] [Anonymous], 2006, SIAM J SCI COMPUT, DOI DOI 10.1137/S1064827500378799
  • [4] [Anonymous], 1999, East-West J. Numer. Math
  • [5] [Anonymous], CONTRIB MATH COMPUT
  • [6] [Anonymous], PREPRINT
  • [7] [Anonymous], ADAPTIVE FINITE ELEM
  • [8] [Anonymous], 1964, APPL MATH SER
  • [9] IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS
    ASCHER, UM
    RUUTH, SJ
    WETTON, BTR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 797 - 823
  • [10] An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes -: V.: Local time stepping and p-adaptivity
    Dumbser, Michael
    Kaeser, Martin
    Toro, Eleuterio F.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 171 (02) : 695 - 717