A novel subcritical transition to turbulence in Taylor-Couette flow with counter-rotating cylinders

被引:10
作者
Crowley, Christopher J. [1 ,2 ]
Krygier, Michael C. [1 ,2 ]
Borrero-Echeverry, Daniel [3 ]
Grigoriev, Roman O. [1 ,2 ]
Schatz, Michael F. [1 ,2 ]
机构
[1] Georgia Inst Technol, Ctr Nonlinear Sci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Willamette Univ, Dept Phys, Salem, OR 97301 USA
关键词
transition to turbulence; bifurcation; Taylor-Couette flow; BIFURCATION PHENOMENA; FLUID FRICTION; STABILITY; INSTABILITY; REGIMES;
D O I
10.1017/jfm.2020.177
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The transition to turbulence in Taylor-Couette flow often occurs via a sequence of supercritical bifurcations to progressively more complex, yet stable, flows. We describe a subcritical laminar-turbulent transition in the counter-rotating regime mediated by a transient intermediate state in a system with an axial aspect ratio of and a radius ratio of . In this regime, flow visualization experiments and numerical simulations indicate the intermediate state corresponds to an aperiodic flow featuring interpenetrating spirals. Furthermore, the reverse transition out of turbulence leads first to the same intermediate state, which is now stable, before returning to an azimuthally symmetric laminar flow. Time-resolved tomographic particle image velocimetry is used to characterize the experimental flows; these measurements compare favourably to direct numerical simulations with axial boundary conditions matching those of the experiments.
引用
收藏
页数:19
相关论文
共 54 条
[11]   TRANSITION IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1965, 21 :385-&
[12]   A NOTE ON TAYLOR INSTABILITY IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF APPLIED MECHANICS, 1967, 34 (03) :529-&
[13]  
Couette M., 1890, Annales de chimie et de physique, V6, P433
[14]   Turbulent bursts in Couette-Taylor flow [J].
Coughlin, K ;
Marcus, PS .
PHYSICAL REVIEW LETTERS, 1996, 77 (11) :2214-2217
[15]   Scaling laws for noise-induced superpersistent chaotic transients [J].
Do, Y ;
Lai, YC .
PHYSICAL REVIEW E, 2005, 71 (04)
[16]   LOCAL STABILITY ANALYSIS ALONG LAGRANGIAN PATHS [J].
ECKHARDT, B ;
YAO, D .
CHAOS SOLITONS & FRACTALS, 1995, 5 (11) :2073-2088
[17]   Nonlinear stability of laboratory quasi-Keplerian flows [J].
Edlund, E. M. ;
Ji, H. .
PHYSICAL REVIEW E, 2014, 89 (02)
[18]   Tomographic particle image velocimetry [J].
Elsinga, G. E. ;
Scarano, F. ;
Wieneke, B. ;
van Oudheusden, B. W. .
EXPERIMENTS IN FLUIDS, 2006, 41 (06) :933-947
[19]   Analytic expression for Taylor-Couette stability boundary [J].
Esser, A ;
Grossmann, S .
PHYSICS OF FLUIDS, 1996, 8 (07) :1814-1819
[20]   Sensitive dependence on initial conditions in transition to turbulence in pipe flow [J].
Faisst, H ;
Eckhardt, B .
JOURNAL OF FLUID MECHANICS, 2004, 504 :343-352