Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability

被引:280
作者
Wu, Chaoxing [1 ]
Kim, Tae Whan [1 ]
Choi, Hwan Young [1 ]
Strukov, Dmitri B. [2 ]
Yang, J. Joshua [3 ]
机构
[1] Hanyang Univ, Dept Elect & Comp Engn, Seoul 133791, South Korea
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
基金
新加坡国家研究基金会;
关键词
ORGANIC NONVOLATILE MEMORY; DEVICE;
D O I
10.1038/s41467-017-00803-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
If a three-dimensional physical electronic system emulating synapse networks could be built, that would be a significant step toward neuromorphic computing. However, the fabrication complexity of complementary metal-oxide-semiconductor architectures impedes the achievement of three-dimensional interconnectivity, high-device density, or flexibility. Here we report flexible three-dimensional artificial chemical synapse networks, in which two-terminal memristive devices, namely, electronic synapses (e-synapses), are connected by vertically stacking crossbar electrodes. The e-synapses resemble the key features of biological synapses: unilateral connection, long-term potentiation/depression, a spike-timing-dependent plasticity learning rule, paired-pulse facilitation, and ultralow-power consumption. The three-dimensional artificial synapse networks enable a direct emulation of correlated learning and trainable memory capability with strong tolerances to input faults and variations, which shows the feasibility of using them in futuristic electronic devices and can provide a physical platform for the realization of smart memories and machine learning and for operation of the complex algorithms involving hierarchical neural networks.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Electrical characteristics of poly(methylsilsesquioxane) thin films for non-volatile memory [J].
Ahmad, Zubair ;
Ooi, P. C. ;
Aw, K. C. ;
Sayyad, M. H. .
SOLID STATE COMMUNICATIONS, 2011, 151 (04) :297-300
[2]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour [J].
Aoki, Yoshitaka ;
Wiemann, Carsten ;
Feyer, Vitaliy ;
Kim, Hong-Seok ;
Schneider, Claus Michael ;
Ill-Yoo, Han ;
Martin, Manfred .
NATURE COMMUNICATIONS, 2014, 5
[4]   Synchrony detection and amplification by silicon neurons with STDP synapses [J].
Bofill-i-Petit, A ;
Murray, AF .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05) :1296-1304
[5]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[6]   Linear summation of excitatory inputs by CA1 pyramidal neurons [J].
Cash, S ;
Yuste, R .
NEURON, 1999, 22 (02) :383-394
[7]   Modulation of spike timing by sensory deprivation during induction of cortical map plasticity [J].
Celikel, T ;
Szostak, VA ;
Feldman, DE .
NATURE NEUROSCIENCE, 2004, 7 (05) :534-541
[8]   Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Lu, Wei .
ACS NANO, 2011, 5 (09) :7669-7676
[9]   Switching Kinetic of VCM-Based Memristor: Evolution and Positioning of Nanofilament [J].
Chen, Jui-Yuan ;
Huang, Chun-Wei ;
Chiu, Chung-Hua ;
Huang, Yu-Ting ;
Wu, Wen-Wei .
ADVANCED MATERIALS, 2015, 27 (34) :5028-+
[10]   Do we have brain to spare? [J].
Drachman, DA .
NEUROLOGY, 2005, 64 (12) :2004-2005