Syzygies in Equivariant Cohomology for Non-abelian Lie Groups

被引:5
|
作者
Franz, Matthias [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY | 2016年 / 14卷
基金
加拿大自然科学与工程研究理事会;
关键词
Cohen-Macaulay module; Equivariant cohomology; Infinitesimal orbit type; Non-abelian Lie group; Syzygy; DUALITY; SPACES;
D O I
10.1007/978-3-319-31580-5_14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the work of Allday-Franz-Puppe on syzygies in equivariant cohomology from tori to arbitrary compact connected Lie groups G. In particular, we show that for a compact orientable G-manifold X the analogue of the Chang-Skjelbred sequence is exact if and only if the equivariant cohomology of X is reflexive, if and only if the equivariant Poincare pairing for X is perfect. Along the way we establish that the equivariant cohomology modules arising from the orbit filtration of X are Cohen-Macaulay. We allow singular spaces and introduce a Cartan model for their equivariant cohomology. We also develop a criterion for the finiteness of the number of infinitesimal orbit types of a G-manifold.
引用
收藏
页码:325 / 360
页数:36
相关论文
共 50 条
  • [21] On α-type (equivariant) cohomology of Hom-pre-Lie algebras
    Guo, Shuangjian
    Saha, Ripan
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (02) : 479 - 499
  • [22] The holographic non-abelian vortex
    Tallarita, Gianni
    Auzzi, Roberto
    Peterson, Adam
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (03):
  • [23] Non-abelian GKM theory
    Goertsches, Oliver
    Mare, Augustin-Liviu
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (1-2) : 1 - 27
  • [24] A new description of equivariant cohomology for totally disconnected groups
    Voigt, Christian
    JOURNAL OF K-THEORY, 2008, 1 (03) : 431 - 472
  • [25] FLAG BOTT MANIFOLDS OF GENERAL LIE TYPE AND THEIR EQUIVARIANT COHOMOLOGY RINGS
    Kaji, Shizuo
    Kuroki, Shintaro
    Lee, Eunjeong
    Suh, Dong Youp
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2020, 22 (01) : 375 - 390
  • [26] Landau-Ginzburg theories of non-Abelian quantum Hall states from non-Abelian bosonization
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [27] Group theory of non-abelian vortices
    Eto, Minoru
    Fujimori, Toshiaki
    Gudnason, Sven Bjarke
    Jiang, Yunguo
    Konishi, Kenichi
    Nitta, Muneto
    Ohashi, Keisuke
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11):
  • [28] Non-abelian T-folds
    Bugden, Mark
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [29] Non-Abelian vortices with product moduli
    Dorigoni, Daniele
    Konishi, Kenichi
    Ohashi, Keisuke
    PHYSICAL REVIEW D, 2009, 79 (04):
  • [30] HIGHER GENERATION BY ABELIAN SUBGROUPS IN LIE GROUPS
    Antolin-Camarena, O.
    Gritschacher, S.
    Villarreal, B.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1375 - 1390