Syzygies in Equivariant Cohomology for Non-abelian Lie Groups

被引:5
|
作者
Franz, Matthias [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY | 2016年 / 14卷
基金
加拿大自然科学与工程研究理事会;
关键词
Cohen-Macaulay module; Equivariant cohomology; Infinitesimal orbit type; Non-abelian Lie group; Syzygy; DUALITY; SPACES;
D O I
10.1007/978-3-319-31580-5_14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the work of Allday-Franz-Puppe on syzygies in equivariant cohomology from tori to arbitrary compact connected Lie groups G. In particular, we show that for a compact orientable G-manifold X the analogue of the Chang-Skjelbred sequence is exact if and only if the equivariant cohomology of X is reflexive, if and only if the equivariant Poincare pairing for X is perfect. Along the way we establish that the equivariant cohomology modules arising from the orbit filtration of X are Cohen-Macaulay. We allow singular spaces and introduce a Cartan model for their equivariant cohomology. We also develop a criterion for the finiteness of the number of infinitesimal orbit types of a G-manifold.
引用
收藏
页码:325 / 360
页数:36
相关论文
共 50 条
  • [1] Syzygies in equivariant cohomology in positive characteristic
    Allday, Christopher
    Franz, Matthias
    Puppe, Volker
    FORUM MATHEMATICUM, 2021, 33 (02) : 547 - 567
  • [2] On the equivariant de Rham cohomology for non-compact Lie groups
    Arias Abad, Camilo
    Uribe, Bernardo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 39 : 184 - 189
  • [3] A QUOTIENT CRITERION FOR SYZYGIES IN EQUIVARIANT COHOMOLOGY
    Franz, Matthias
    TRANSFORMATION GROUPS, 2017, 22 (04) : 933 - 965
  • [4] The Quotient Criterion for Syzygies in Equivariant Cohomology for Elementary Abelian 2-Group Actions
    Chaves S.
    La Matematica, 2024, 3 (3): : 1016 - 1031
  • [5] Equivariant cohomology of (Z2)r-manifolds and syzygies
    Puppe, Volker
    FUNDAMENTA MATHEMATICAE, 2018, 243 (01) : 55 - 74
  • [6] Dual topologies on non-abelian groups
    Ferrer, M. V.
    Hernandez, S.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) : 2367 - 2377
  • [7] Equivariant Cohomology over Lie Groupoids and Lie-Rinehart Algebras
    Huebschmann, Johannes
    LETTERS IN MATHEMATICAL PHYSICS, 2009, 90 (1-3) : 201 - 251
  • [8] Equivariant cohomology and localization for Lie algebroids
    Bruzzo, U.
    Cirio, L.
    Rossi, P.
    Rubtsov, V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (01) : 18 - 29
  • [9] Equivariant cohomology and localization for Lie algebroids
    U. Bruzzo
    L. Cirio
    P. Rossi
    V. Rubtsov
    Functional Analysis and Its Applications, 2009, 43 : 18 - 29
  • [10] On a duality for codes over non-abelian groups
    Dietrich, Heiko
    Schillewaert, Jeroen
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 789 - 805