共 50 条
Star-Shaped Oligotriarylamines with Planarized Triphenylamine Core: Solution-Processable, High-Tg Hole-Injecting and Hole-Transporting Materials for Organic Light-Emitting Devices
被引:113
|作者:
Jiang, Zuoquan
[1
]
Ye, Tengling
[2
]
Yang, Chuluo
[1
]
Yang, Dezhi
[2
]
Zhu, Minrong
[1
]
Zhong, Cheng
[1
]
Qin, Jingui
[1
]
Ma, Dongge
[2
]
机构:
[1] Wuhan Univ, Dept Chem, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
基金:
中国国家自然科学基金;
关键词:
AMORPHOUS MOLECULAR MATERIALS;
METHYL-SUBSTITUTED DERIVATIVES;
PHOSPHORESCENT OLEDS;
CONJUGATED POLYMERS;
DIODES;
TRIARYLAMINES;
ELECTROLUMINESCENCE;
PERFORMANCE;
DENDRIMERS;
STABILITY;
D O I:
10.1021/cm1018585
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Two novel star-shaped oligotriarylamines with planar triphenylamine core and peripheral triarylamine groups, namely FATPA-T and FATPA-Cz, were synthesized by Suzuki cross-coupling reaction. The molecular design imparts the materials with the following features: (i) excellent thermal stabilities with quite high glass transition temperatures (237 degrees C for FATPA-T and 272 degrees C for FATPA-Cz); (ii) good solution-processability; (iii) good hole mobility, efficient hole injection, and electron-blocking functions. Furthermore, their optoelectronic properties can be modulated by the peripheral triarylamine groups. For example, FATPA-T with triphenylamine peripheries shows the significantly red-shifted absorption and emission, as well as the small band gap as compared to FATPA-Cz with carbazole peripheries. Double-layer Alq(3)-emitting OLEDs using FATPA-T or FATPA-Cz as hole-transport layer by spin-coating method were fabricated, and the FATPA-Cz-based devices show greatly improved performance as compared to standard NPB-based device by vacuum-evaporation of NPB. The optimized three-layer Alq(3)-emitting OLEDs by using FATPA-Cz and NPB as double hole-transport layers exhibit the maximum current efficiency of 6.83 cd/A, which is the highest for the Alq3-based green emission under the similar device structures. The advantages of solution-processablity and very high T-g make the star-shaped oligotriarylamines ideal substitutes for conventional arylamines as hole-inject and hole-transport materials.
引用
收藏
页码:771 / 777
页数:7
相关论文