A Hankel matrix acting on Hardy and Bergman spaces

被引:45
作者
Galanopoulos, Petros [1 ]
Angel Pelaez, Jose [1 ]
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
关键词
Hankel matrices; Hardy spaces; Bergman spaces; DIRICHLET SPACE; HILBERT MATRIX; OPERATORS;
D O I
10.4064/sm200-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be mu finite positive Borel measure on [0,1). Let H(mu) = (mu(n,k))(n,k >= 0) be the Hankel matrix with entries mu(n,k) = integral([0,1)) t(n+k) d mu(t). The matrix H(mu) induces formally an operator on the space of all analytic functions in the unit disc by the formally H(mu)(f)(z) = Sigma(infinity)(n=0)(Sigma(infinity)(k=0)mu(n,k)ak)z(n), z is an element of D, where f (z) = Sigma(infinity)(n=0)a(n)z(n) is an analytic function in D. We characterize those positive Borel measures on [0,1) such that H(mu)(f)(z) = integral([0,1)) f(t)/1-tz d mu(t) for all f in the Hardy space H(1), and among them we describe those for which H(mu) is bounded and compact on H(1). We also study the analogous problem for the Bergman space A(2).
引用
收藏
页码:201 / 220
页数:20
相关论文
共 24 条
[1]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[2]  
Arcozzi N, 2002, REV MAT IBEROAM, V18, P443
[3]   BILINEAR FORMS ON THE DIRICHLET SPACE [J].
Arcozzi, Nicola ;
Rochberg, Richard ;
Sawyer, Eric ;
Wick, Brett D. .
ANALYSIS & PDE, 2010, 3 (01) :21-47
[4]   AN INTERPOLATION PROBLEM FOR BOUNDED ANALYTIC FUNCTIONS [J].
CARLESON, L .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :921-930
[5]  
CIMA J, 1999, ACTA SCI MATH SZEGED, P505
[6]  
CIMA J, 1989, LONDON MATH SOC LECT, V137, P133
[7]  
DIAMANTOPOULOS DE, 2004, J MATH, V48, P1067
[8]   Composition operators and the Hilbert matrix [J].
Diamantopoulos, E ;
Siskakis, AG .
STUDIA MATHEMATICA, 2000, 140 (02) :191-198
[9]   Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type [J].
Dostanic, Milutin ;
Jevtic, Miroljub ;
Vukotic, Dragan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2800-2815
[10]  
Duren P, 1970, THEORY HP SPACES