A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles

被引:34
作者
Operti, Maria Camilla [1 ,2 ,3 ]
Fecher, David [3 ]
van Dinther, Eric A. W. [1 ,2 ]
Grimm, Silko [3 ]
Jaber, Rima [3 ]
Figdor, Carl G. [1 ,2 ]
Tagit, Oya [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Mol Life Sci, Dept Tumor Immunol, NL-6500 HB Nijmegen, Netherlands
[2] Oncode Inst, Nijmegen, Netherlands
[3] Evonik Nutr & Care GmbH, D-64293 Darmstadt, Germany
关键词
Poly(lactic-co-glycolic acid); Sub-micron particles; Continuous process technology; Homogenization; Microfluidics; Scale-up production; DRUG-DELIVERY; POLYMERIC NANOPARTICLES; BIODEGRADABLE NANOPARTICLES; BIOMEDICAL APPLICATIONS; PROTEIN ENCAPSULATION; ANTICANCER DRUG; IN-VITRO; SCALE-UP; RELEASE; OPTIMIZATION;
D O I
10.1016/j.ijpharm.2018.08.044
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clinical and commercial development of polymeric sub-micron size formulations based on poly(lactic-coglycolic acid) (PLGA) particles is hampered by the challenges related to their good manufacturing practice (GMP)-compliant, scale-up production without affecting the formulation specifications. Continuous process technologies enable large-scale production without changing the process or formulation parameters by increasing the operation time. Here, we explore three well-established process technologies regarding continuity for the large-scale production of sub-micron size PLGA particles developed at the lab scale using a batch method. We demonstrate optimization of critical process and formulation parameters for high-shear mixing, high-pressure homogenization and microfluidics technologies to obtain PLGA particles with a mean diameter of 150-250 nm and a small polydispersity index (PDI, <= 0.2). The most influential parameters on the particle size distribution are discussed for each technique with a critical evaluation of their suitability for GMP production. Although each technique can provide particles in the desired size range, high-shear mixing is found to be particularly promising due to the availability of GMP-ready equipment and large throughput of production. Overall, our results will be of great guidance for establishing continuous process technologies for the GMP-compliant, large-scale production of sub-micron size PLGA particles, facilitating their commercial and clinical development.
引用
收藏
页码:140 / 148
页数:9
相关论文
共 50 条
[21]   Membrane fouling caused by sub-micron particles in a mixed liquor suspension of an MBR [J].
Kimura, K. ;
Ogyu, R. ;
Miyoshi, T. ;
Naruse, T. ;
Tsuyuhara, T. ;
Watanabe, Y. .
WATER SCIENCE AND TECHNOLOGY, 2013, 67 (11) :2602-2607
[22]   Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong [J].
Cheung, K. ;
Ling, Z. H. ;
Wang, D. W. ;
Wang, Y. ;
Guo, H. ;
Lee, B. ;
Li, Y. J. ;
Chan, C. K. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 527 :287-296
[23]   Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion [J].
Palanisami, Akilan ;
Miller, John H., Jr. .
ELECTROPHORESIS, 2010, 31 (21) :3613-3618
[24]   Filtration Performance of Biodegradable Electrospun Nanofibrous Membrane for Sub-Micron Particles: A Systematic Review [J].
Keyvani, Sepideh ;
Golbabaei, Farideh ;
Neisiany, Rasoul Esmaeely ;
Das, Oisik ;
Pourmand, Mohammad Reza ;
Kalantary, Saba .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2025, 310 (03)
[25]   One-pot synthesis of sub-micron organosilicate particles for the formulation of Pickering emulsions [J].
Lorentz, Romain ;
Rahali, Younes ;
Issa, Samar ;
Bensouda, Yahya ;
Holtzinger, Gerard ;
Aoussat, Ameziane ;
Pense-Lheritier, Anne-Marie .
POWDER TECHNOLOGY, 2014, 264 :446-457
[26]   Biocompatible superparamagnetic sub-micron vaterite particles for thermo-chemotherapy: From controlled design to in vitro anticancer synergism [J].
Choukrani, Ghizlane ;
Maharjan, Bikendra ;
Park, Chan Hee ;
Kim, Cheol Sang ;
Sasikala, Arathyram Ramachandra Kurup .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
[27]   Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification [J].
Blanco-Fernandez, Barbara ;
Chakravarty, Shatadru ;
Nkansah, Michael K. ;
Shapiro, Erik M. .
ACTA BIOMATERIALIA, 2016, 45 :276-285
[28]   NUMERICAL STUDY ON THE INFLUENCE OF MICROCHANNEL'S GEOMETRY ON SUB-MICRON PARTICLES SEPARATION USING ACOUSTOPHORESIS [J].
Lai, Tsz Wai ;
Fu, Sau Chung ;
Chan, Ka Chung ;
Chao, Christopher Yu Hang ;
Law, Anthony Kwok Yung .
PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 1, 2020,
[29]   Synthesis and optical properties of sub-micron sized rare earth-doped zirconia particles [J].
Freris, I. ;
Riello, P. ;
Enrichi, F. ;
Cristofori, D. ;
Benedetti, A. .
OPTICAL MATERIALS, 2011, 33 (11) :1745-1752
[30]   Dry powder formulation for pulmonary infections: Ciprofloxacin loaded in chitosan sub-micron particles generated by electrospray [J].
Arauzo, Beatriz ;
Pilar Lobera, M. ;
Monzon, Antonio ;
Santamaria, Jesus .
CARBOHYDRATE POLYMERS, 2021, 273