Asymmetric Equivalences in Fuzzy Logic

被引:3
作者
Hu, Bo [1 ]
Bi, Lvqing [2 ]
Li, Sizhao [3 ]
Dai, Songsong [3 ]
机构
[1] Guizhou Normal Univ, Sch Mech & Elect Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Yulin Normal Univ, Sch Elect & Commun Engn, Yulin 537000, Peoples R China
[3] Xiamen Univ, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 10期
关键词
fuzzy logic; t-norm; fuzzy implication; asymmetric equivalence; quasi-metric; ROBUSTNESS ANALYSIS; LATTICES;
D O I
10.3390/sym9100224
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a new class of operations called asymmetric equivalences. Several properties of asymmetric equivalence operations have been investigated. Based on the asymmetric equivalence, quasi-metric spaces are constructed on [0, 1]. Finally, we discuss symmetrization of asymmetric equivalences.
引用
收藏
页数:9
相关论文
共 18 条
[11]   Robustness of fuzzy reasoning via logically equivalence measure [J].
Jin, Jianhua ;
Li, Yongming ;
Li, Chunquan .
INFORMATION SCIENCES, 2007, 177 (22) :5103-5117
[12]  
Klement E.P., 2000, Triangular Norms
[13]   Equations, states, and lattices of infinite-dimensional Hilbert spaces [J].
Megill, ND ;
Pavicic, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (10) :2337-2379
[14]   Equivalencies, identities, symmetric differences, and congruencies in orthomodular lattices [J].
Megill, ND ;
Pavicic, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (12) :2797-2805
[15]   Deduction, ordering, and operations in quantum logic [J].
Megill, ND ;
Pavicic, M .
FOUNDATIONS OF PHYSICS, 2002, 32 (03) :357-378
[16]   Simplification and independence of axioms of fuzzy logic systems IMTL and NM [J].
Pei, DW .
FUZZY SETS AND SYSTEMS, 2005, 152 (02) :303-320
[17]  
[王国俊 Wang Guojun], 2014, [中国科学. 信息科学, Scientia Sinica Informationis], V44, P623
[18]  
Wang S., 2006, SYST MATH, V2, p[18, 22]