Asymmetric Equivalences in Fuzzy Logic

被引:3
作者
Hu, Bo [1 ]
Bi, Lvqing [2 ]
Li, Sizhao [3 ]
Dai, Songsong [3 ]
机构
[1] Guizhou Normal Univ, Sch Mech & Elect Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Yulin Normal Univ, Sch Elect & Commun Engn, Yulin 537000, Peoples R China
[3] Xiamen Univ, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 10期
关键词
fuzzy logic; t-norm; fuzzy implication; asymmetric equivalence; quasi-metric; ROBUSTNESS ANALYSIS; LATTICES;
D O I
10.3390/sym9100224
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a new class of operations called asymmetric equivalences. Several properties of asymmetric equivalence operations have been investigated. Based on the asymmetric equivalence, quasi-metric spaces are constructed on [0, 1]. Finally, we discuss symmetrization of asymmetric equivalences.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] Baczyski M., 2008, Studies in Fuzziness and Soft Computing
  • [2] The LII and LII1/2 propositional and predicate logics
    Cintula, P
    [J]. FUZZY SETS AND SYSTEMS, 2001, 124 (03) : 289 - 302
  • [3] Robustness analysis of full implication inference method
    Dai, Songsong
    Pei, Daowu
    Guo, Donghui
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (05) : 653 - 666
  • [4] Robustness analysis of logic metrics on F (X)
    Duan, Jingyao
    Li, Yongming
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 61 : 33 - 42
  • [5] EQ-logics: Non-commutative fuzzy logics based on fuzzy equality
    Dyba, Martin
    Novak, Vilem
    [J]. FUZZY SETS AND SYSTEMS, 2011, 172 (01) : 13 - 32
  • [6] Esteva F, 2001, ARCH MATH LOGIC, V40, P39, DOI 10.1007/s001530050173
  • [7] Monoidal t-norm based logic: towards a logic for left-continuous t-norms
    Esteva, F
    Godo, L
    [J]. FUZZY SETS AND SYSTEMS, 2001, 124 (03) : 271 - 288
  • [8] Fletcher P., 1982, QUASI UNIFORM
  • [9] Similarity of fuzzy choice functions
    Georgescu, Irina
    [J]. FUZZY SETS AND SYSTEMS, 2007, 158 (12) : 1314 - 1326
  • [10] Hajek P., 1998, METAMATHEMATICS FUZZ