Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array

被引:8
作者
Liu, Ying [1 ]
Zhang, Zongyu [1 ]
Zhou, Chengwei [1 ,2 ]
Yan, Chenggang [3 ]
Shi, Zhiguo [1 ,4 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
[4] Zhejiang Univ, Int Joint Innovat Ctr, Haining 314400, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; Estimation; Sensor arrays; Sensors; Bayes methods; Inference algorithms; Sparse matrices; gain-phase error; outlier; sparse array; variational Bayesian inference; COPRIME ARRAY; DOA ESTIMATION; PERSPECTIVE; ALGORITHM;
D O I
10.1109/TVT.2022.3173418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional direction-of-arrival (DOA) estimation algorithms are sensitive to array imperfections and outliers, making it challenging to realize accurate estimates in real applications. Facing the challenge, we propose a robust variational Bayesian inference based DOA estimation algorithm using the linear sparse array in this paper, where accurate DOA estimation with increased number of degrees of freedom (DOFs) is realized. With the mixture of von Mises model, a prior-grid scheme is further proposed to alleviate the computational burden introduced by the Bayesian variational inference framework. Since there is no restriction on the prior knowledge of the number of sources, the proposed algorithm is friendly to actual scenarios. Simulation results demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:8591 / 8602
页数:12
相关论文
共 45 条
[1]   Weighted Sparse Bayesian Learning (WSBL) for Basis Selection in Linear Underdetermined Systems [J].
Al Hilli, Ahmed ;
Najafizadeh, Laleh ;
Petropulu, Athina .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) :7353-7367
[2]  
Andersen E. B., 1986, COMPSTAT, P3
[3]  
[Anonymous], 2000, DIRECTIONAL STAT, DOI DOI 10.1002/9780470316979
[4]   Variational Bayesian Inference of Line Spectra [J].
Badiu, Mihai-Alin ;
Hansen, Thomas Lundgaard ;
Fleury, Bernard Henri .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (09) :2247-2261
[5]   Novel Low-Complexity Estimators for the Shape Parameter of the Generalized Gaussian Distribution [J].
Chen, Yunfei ;
Beaulieu, Norman C. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (04) :2067-2071
[6]   Robust Bayesian learning approach for massive MIMO channel estimation [J].
Dai, Jisheng ;
Zhou, Lei ;
Chang, Chunqi ;
Xu, Weichao .
SIGNAL PROCESSING, 2020, 168
[7]   Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation [J].
Dai, Jisheng ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) :744-756
[8]  
Friedlander B., 1988, ICASSP 88: 1988 International Conference on Acoustics, Speech, and Signal Processing (Cat. No.88CH2561-9), P2681, DOI 10.1109/ICASSP.1988.197201
[9]   Efficiency of the Approximated Shape Parameter Estimator in the Generalized Gaussian Distribution [J].
Gonzalez-Farias, Graciela ;
Dominguez Molina, J. Armando ;
Rodriguez-Dagnino, Ramon M. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (08) :4214-4223
[10]   TOWARD FUTURE UNMANNED AERIAL VEHICLE NETWORKS: ARCHITECTURE, RESOURCE ALLOCATION AND FIELD EXPERIMENTS [J].
Kawamoto, Yuichi ;
Nishiyama, Hiroki ;
Kato, Nei ;
Ono, Fumie ;
Miura, Ryu .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (01) :94-99