Copper silicate nanotubes anchored on reduced graphene oxide for long-life lithium-ion battery

被引:71
作者
Tang, Chunjuan [1 ,2 ]
Zhu, Jiexin [1 ]
Wei, Xiujuan [1 ]
He, Liang [1 ]
Zhao, Kangning [1 ]
Xu, Chang [1 ]
Zhou, Liang [1 ]
Wang, Bo [2 ]
Sheng, Jinzhi [1 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Copper silicate; Nanotube; Reduced graphene oxide; Anode material; Lithium-ion battery; HIGH-PERFORMANCE ANODE; HOLLOW SPHERES; CARBON; CAPACITY; NANOCOMPOSITES; TEMPERATURE; COMPOSITES; NANOSHEETS; NANOWIRES; SHEETS;
D O I
10.1016/j.ensm.2017.01.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper silicate (CSO) is a promising anode material for lithium-ion batteries (LIBs). It delivers high specific capacity; however, the capacity fades quickly because of its intrinsic poor electric conductivity and large volume variation during lithium ion insertion/extraction. Herein, a sandwich-like structure with CSO nanotubes grown on both sides of reduced graphene oxide (RGO) is designed to solve the capacity fading issue. The RGO not only serves as a soft and robust matrix to mitigate the large volume change during cycling but also acts as the electron highway. When applied as the anode material for LIBs, the as-obtained CSO/RGO sandwich-like structure exhibits high reversible capacity, good rate capability, and excellent cycling stability. A reversible capacity of 516 mA h g(-1) can be achieved after 1000 cycles at 500 mA g(-1).
引用
收藏
页码:152 / 156
页数:5
相关论文
共 42 条
[1]   Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode [J].
An, Qinyou ;
Lv, Fan ;
Liu, Qiuqi ;
Han, Chunhua ;
Zhao, Kangning ;
Sheng, Jinzhi ;
Wei, Qiulong ;
Yan, Mengyu ;
Mai, Liqiang .
NANO LETTERS, 2014, 14 (11) :6250-6256
[2]  
[Anonymous], 2011, ANGEW CHEM INT ED, DOI DOI 10.1002/ANGE.201103163
[3]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[4]   Robust α-Fe2O3 nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Zhang, Feng ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (25) :13377-13383
[5]   Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries [J].
Cheng, Wei ;
Rechberger, Felix ;
Ilari, Gabriele ;
Ma, Huan ;
Lin, Wan-Ing ;
Niederberger, Markus .
CHEMICAL SCIENCE, 2015, 6 (12) :6908-6915
[6]   Growth of Ultrathin ZnCo2O4 Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties [J].
Gao, Guoxin ;
Wu, Hao Bin ;
Dong, Bitao ;
Ding, Shujiang ;
Lou, Xiong Wen .
ADVANCED SCIENCE, 2015, 2 (1-2)
[7]   Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium-sulfur batteries [J].
He, Jiarui ;
Chen, Yuanfu ;
Li, Pingjian ;
Fu, Fei ;
Wang, Zegao ;
Zhang, Wanli .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) :18605-18610
[8]   Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity [J].
Hu, Lung-Hao ;
Wu, Feng-Yu ;
Lin, Cheng-Te ;
Khlobystov, Andrei N. ;
Li, Lain-Jong .
NATURE COMMUNICATIONS, 2013, 4
[9]   One-Pot Synthesis of Tin-Embedded Carbon/Silica Nanocomposites for Anode Materials in Lithium-Ion Batteries [J].
Hwang, Jongkook ;
Woo, Seung Hee ;
Shim, Jongmin ;
Jo, Changshin ;
Lee, Kyu Tae ;
Lee, Jinwoo .
ACS NANO, 2013, 7 (02) :1036-1044
[10]   Graphene-Nanotube-Iron Hierarchical Nanostructure as Lithium Ion Battery Anode [J].
Lee, Si-Hwa ;
Sridhar, Vadahanambi ;
Jung, Jung-Hwan ;
Karthikeyan, Kaliyappan ;
Lee, Yun-Sung ;
Mukherjee, Rahul ;
Koratkar, Nikhil ;
Oh, Il-Kwon .
ACS NANO, 2013, 7 (05) :4242-4251