Effect of Temperature Change on the Elastic Properties of Al Matrix Reinforced by Single-Walled Carbon Nanotubes

被引:3
作者
Ahmadi, M. [1 ]
Ansari, R. [1 ]
Rouhi, S. [2 ]
机构
[1] Univ Guilan, Dept Mech Engn, POB 3756, Rasht, Iran
[2] Islamic Azad Univ, Langarud Branch, Dept Mech Engn, Langarud, Iran
关键词
Finite element modeling; Young's modulus; temperature; Elastic properties; CNT; Al nanocomposites; MOLECULAR-DYNAMICS SIMULATIONS; POLYMER-CLAY NANOCOMPOSITES; MECHANICAL-PROPERTIES; INTERFACIAL CHARACTERISTICS; ALUMINUM COMPOSITES; MULTISCALE APPROACH; BEHAVIOR; DAMAGE; SIZE;
D O I
10.1007/s13538-020-00735-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, finite element modeling is used to compute the elastic properties of aluminum matrix reinforced by carbon nanotubes at different temperatures. Different patterns, including longitudinal dispersion along the loading, longitudinal dispersion perpendicular to the loading and random dispersion, are employed to disperse the nanotubes in Al matrix. Besides, the dependence of the mechanical properties of nanotube/Al nanocomposites on the nanotube aspect ratio (the ratio of nanotube length to its diameter) and volume percentage is studied. It is shown that the effect of temperature variation on the elastic properties of nanotube/Al nanocomposites is the same as the pure Al matrix. Investigating the influence of nanotube volume percentage, it is seen that nanocomposites with larger nanotube volume percentages possess higher elastic modulus.
引用
收藏
页码:164 / 177
页数:14
相关论文
共 43 条
[1]   FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites [J].
Alfonso, I. ;
Navarro, O. ;
Vargas, J. ;
Beltran, A. ;
Aguilar, C. ;
Gonzalez, G. ;
Figueroa, I. A. .
COMPOSITE STRUCTURES, 2015, 127 :420-425
[2]   Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes [J].
Alian, A. R. ;
Kundalwal, S. I. ;
Meguid, S. A. .
COMPOSITE STRUCTURES, 2015, 131 :545-555
[3]   Multiscale modeling of carbon nanotube epoxy composites [J].
Alian, A. R. ;
Kundalwal, S. I. ;
Meguid, S. A. .
POLYMER, 2015, 70 :149-160
[4]   Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites [J].
Almasi, Ashkan ;
Silani, Mohammad ;
Talebi, Hossein ;
Rabczuk, Timon .
COMPOSITE STRUCTURES, 2015, 133 :1302-1312
[5]   Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading [J].
Ayatollahi, M. R. ;
Shadlou, S. ;
Shokrieh, M. M. .
COMPOSITE STRUCTURES, 2011, 93 (09) :2250-2259
[6]   Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification [J].
Bakshi, Srinivasa R. ;
Keshri, Anup K. ;
Singh, Virendra ;
Seal, Sudipta ;
Agarwal, Arvind .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 481 (1-2) :207-213
[7]   Effect of Temperature on Mechanical Properties of Nanoclay-Reinforced Polymeric Nanocomposites. II: Modeling and Theoretical Predictions [J].
Bayar, S. ;
Delale, F. ;
Li, J. .
JOURNAL OF AEROSPACE ENGINEERING, 2014, 27 (03) :505-519
[8]   A micromechanics-based analysis of effects of square and hexagonal fiber arrays in fibrous composites using DQEM [J].
Bayat, M. ;
Aghdam, M. M. .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 32 :32-40
[9]   Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites [J].
Chandra, Y. ;
Scarpa, F. ;
Chowdhury, R. ;
Adhikari, S. ;
Sienz, J. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 46 :147-153
[10]   Finite element modeling of carbon nanotube agglomerates in polymers [J].
Chanteli, Aggeliki ;
Tserpes, Konstantinos I. .
COMPOSITE STRUCTURES, 2015, 132 :1141-1148